RGB_Controller.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549
  1. #include "RGB_Controller.h"
  2. extern Default_SX1276_t Default_SX1276;
  3. extern SX1276_t SX1276;
  4. extern SX1276_hw_t SX1276_hw;
  5. void RGB_Response_Func(uint8_t* data);
  6. uint8_t RGB_BufCal(uint8_t srcid);
  7. void RGB_Alarm_Operate(void);
  8. void RGB_Data_Stack(uint8_t* rgb_buf);
  9. uint16_t RGB_Location_Address_Check(uint8_t id);
  10. uint8_t SensorID_Cnt = 0;
  11. uint8_t SensorID_buf[8] = {0,};
  12. uint16_t RGB_SensorRedLimit_Buf[9]={0,};
  13. uint16_t RGB_SensorGreenLimit_Buf[9]={0,};
  14. uint16_t RGB_SensorBlueLimit_Buf[9]={0,};
  15. uint8_t LED_Alarm[9] = {0,};
  16. uint8_t RGB_Location_Buf[9][50] = {0};
  17. uint8_t RGB_SensorDataBuf[9][20] = {0,};
  18. void RGB_Data_Init(void){
  19. MyControllerID = M24C32_Data_Read(&hi2c2,MY_ID_ADDRESS);
  20. for(uint8_t i = 0; i < 8; i++){
  21. RGB_SensorRedLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_RED_H_ADDRESS + (6 * i)) << 8);
  22. RGB_SensorRedLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_RED_L_ADDRESS + (6 * i));
  23. }
  24. for(uint8_t i = 0; i < 8; i++){
  25. RGB_SensorGreenLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_GREEN_H_ADDRESS + (6 * i)) << 8);
  26. RGB_SensorGreenLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_GREEN_L_ADDRESS + (6 * i));
  27. }
  28. for(uint8_t i = 0; i < 8; i++){
  29. RGB_SensorBlueLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_BLUE_H_ADDRESS + (6 * i)) << 8);
  30. RGB_SensorBlueLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_BLUE_L_ADDRESS + (6 * i));
  31. }
  32. for(uint8_t i = 0; i < 8; i++){
  33. for(uint8_t aa= 0; aa < 50; aa++)
  34. RGB_Location_Buf[i + 1][aa] = M24C32_Data_Read(&hi2c2,RGB_Location_Address_Check(i + 1) + aa);
  35. }
  36. printf("MY id is %d \n",MyControllerID);
  37. for(uint8_t i = 1; i <= 8; i++){
  38. printf("RGB_SensorRedLimit_Buf[%d] : %04x\n",i,RGB_SensorRedLimit_Buf[i]);
  39. printf("RGB_SensorGreenLimit_Buf[%d] : %04x\n",i,RGB_SensorGreenLimit_Buf[i]);
  40. printf("RGB_SensorBlueLimit_Buf[%d] : %04x\n",i,RGB_SensorBlueLimit_Buf[i]);
  41. }
  42. if(M24C32_Data_Read(&hi2c2,RGB_LORA_FREQ_ADDRESS) == 0xFF){
  43. /*NOP*/
  44. }else{
  45. Default_SX1276.frequency = M24C32_Data_Read(&hi2c2,RGB_LORA_FREQ_ADDRESS);
  46. Default_SX1276.LoRa_Pa_boost = M24C32_Data_Read(&hi2c2,RGB_LORA_PABOOST_ADDRESS);
  47. Default_SX1276.LoRa_Rate = M24C32_Data_Read(&hi2c2,RGB_LORA_SF_ADDRESS);
  48. Default_SX1276.LoRa_BW = M24C32_Data_Read(&hi2c2,RGB_LORA_BANDWIDTH_ADDRESS);
  49. Default_SX1276.LoRa_Lna = M24C32_Data_Read(&hi2c2,RGB_LORA_LNA_ADDRESS);
  50. printf("Lora frequency : %d \n",Default_SX1276.frequency);
  51. printf("Lora LoRa_Pa_boost : %d \n",Default_SX1276.LoRa_Pa_boost);
  52. printf("Lora LoRa_Rate : %d \n",Default_SX1276.LoRa_Rate);
  53. printf("Lora LoRa_BW : %d \n",Default_SX1276.LoRa_BW);
  54. printf("Lora LoRa_Lna : %d \n",Default_SX1276.LoRa_Lna);
  55. }
  56. }
  57. uint16_t RGB_Limit_Address_Check(uint8_t id){
  58. uint16_t ret = 0;
  59. switch(id){
  60. case 1: ret = RGB1_LIMIT_RED_H_ADDRESS;break;
  61. case 2: ret = RGB2_LIMIT_RED_H_ADDRESS;break;
  62. case 3: ret = RGB3_LIMIT_RED_H_ADDRESS;break;
  63. case 4: ret = RGB4_LIMIT_RED_H_ADDRESS;break;
  64. case 5: ret = RGB5_LIMIT_RED_H_ADDRESS;break;
  65. case 6: ret = RGB6_LIMIT_RED_H_ADDRESS;break;
  66. case 7: ret = RGB7_LIMIT_RED_H_ADDRESS;break;
  67. case 8: ret = RGB8_LIMIT_RED_H_ADDRESS;break;
  68. }
  69. return ret;
  70. }
  71. uint16_t RGB_Location_Address_Check(uint8_t id){
  72. uint16_t ret = 0;
  73. switch(id){
  74. case 1: ret = RGB1_LOCATION_ADDRESS;break;
  75. case 2: ret = RGB2_LOCATION_ADDRESS;break;
  76. case 3: ret = RGB3_LOCATION_ADDRESS;break;
  77. case 4: ret = RGB4_LOCATION_ADDRESS;break;
  78. case 5: ret = RGB5_LOCATION_ADDRESS;break;
  79. case 6: ret = RGB6_LOCATION_ADDRESS;break;
  80. case 7: ret = RGB7_LOCATION_ADDRESS;break;
  81. case 8: ret = RGB8_LOCATION_ADDRESS;break;
  82. }
  83. return ret;
  84. }
  85. uint8_t DatasendSetVal;
  86. void DataSendStop_Set(uint8_t set){
  87. DatasendSetVal = set;
  88. }
  89. void DataSendStop_Get(uint8_t set){
  90. return DatasendSetVal;
  91. }
  92. void RGB_Response_Func(uint8_t* data){
  93. RGB_CMD_T type = data[bluecell_type];
  94. uint16_t temp = 0;
  95. LoraDataRequest_t Lora_Tempdata;
  96. #if 0
  97. for(uint8_t i = 0; i < 10; i++){
  98. printf("%02x ",data[i]);
  99. }
  100. #endif
  101. switch(type){
  102. case RGB_Status_Data_Request:
  103. Uart2_Data_Send(data,RGB_SensorDataRequest_Length);
  104. break;
  105. case RGB_ControllerID_SET:
  106. Uart1_Data_Send(data,RGB_ControllerID_SET_Length);
  107. M24C32_Data_Write(&hi2c2,&MyControllerID,MY_ID_ADDRESS,1); // EEPROM Controller ID Save
  108. break;
  109. case RGB_SensorID_SET:
  110. Uart2_Data_Send(data,RGB_SensorIDAutoSetRequest_Length);
  111. break;
  112. case RGB_Status_Data_Response:
  113. memcpy(&RGB_SensorDataBuf[data[bluecell_srcid]][bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  114. Uart1_Data_Send(data,data[bluecell_length] + 3);
  115. break;
  116. case RGB_ControllerLimitSet:
  117. Uart1_Data_Send(data,data[bluecell_length] + 3);
  118. M24C32_Data_Write(&hi2c2,&data[bluecell_red_H],RGB_Limit_Address_Check(data[bluecell_dstid]),6); // EEPROM Controller ID Save
  119. break;
  120. case RGB_Sensor_Start:
  121. case RGB_Sensor_Check:
  122. Uart2_Data_Send(data,RGB_SensorIDAutoSetRequest_Length);
  123. break;
  124. case RGB_Sensor_Ack:
  125. Uart2_Data_Send(data,data[bluecell_length] + 3);
  126. break;
  127. case RGB_Reset:
  128. case RGB_SensorID_SET_Success:
  129. case RGB_ID_Allocate_Request:
  130. case RGB_Lora_ControllerIDAmount_Report:
  131. break;
  132. case RGB_Location_Report:
  133. M24C32_Data_Write(&hi2c2,&data[Location_stx],RGB_Location_Address_Check(data[bluecell_srcid]),data[bluecell_length] + 3); // EEPROM Controller ID Save
  134. break;
  135. case RGB_Location_Response:
  136. data[bluecell_length] = M24C32_Data_Read(&hi2c2,RGB_Location_Address_Check(data[bluecell_dstid]) + 2); // EEPROM Controller ID Save
  137. temp = RGB_Location_Address_Check(data[bluecell_srcid]);
  138. for(uint8_t i = 0; i < (data[bluecell_length] + 3); i++){
  139. data[i] = M24C32_Data_Read(&hi2c2,(temp + i)); // EEPROM Controller ID Save
  140. }
  141. data[bluecell_type] = RGB_Location_Response;
  142. data[data[bluecell_length] + 1] = STH30_CreateCrc(&data[bluecell_type],data[bluecell_length]);
  143. Uart1_Data_Send(data,data[bluecell_length] + 3);
  144. break;
  145. case RGB_ControllerID_GET:
  146. Uart1_Data_Send(data,data[bluecell_length] + 3);
  147. break;
  148. case RGB_ControllerLimitGet:
  149. Uart1_Data_Send(data,data[bluecell_length] + 3);
  150. break;
  151. case RGB_Lora_DataResponse:
  152. memcpy(&Lora_Tempdata.Request_stx,&data[bluecell_stx],data[bluecell_length] + 3);
  153. if(Lora_Tempdata.Request_dstid == MyControllerID)
  154. LoraDataSendSet(1);
  155. else
  156. return;
  157. break;
  158. case RGB_Lora_ConfigSet:
  159. data[bluecell_type] = RGB_Lora_ConfigGet;
  160. Default_SX1276.frequency = data[3];
  161. Default_SX1276.LoRa_Pa_boost = data[4];
  162. Default_SX1276.LoRa_Rate = data[5];
  163. Default_SX1276.LoRa_BW = data[6];
  164. Default_SX1276.LoRa_Lna = data[7];
  165. printf("Lora frequency : %d \n",Default_SX1276.frequency);
  166. printf("Lora LoRa_Pa_boost : %d \n",Default_SX1276.LoRa_Pa_boost);
  167. printf("Lora LoRa_Rate : %d \n",Default_SX1276.LoRa_Rate);
  168. printf("Lora LoRa_BW : %d \n",Default_SX1276.LoRa_BW);
  169. printf("Lora LoRa_Lna : %d \n",Default_SX1276.LoRa_Lna);
  170. M24C32_Data_Write(&hi2c2,&data[bluecell_srcid],RGB_LORA_FREQ_ADDRESS,data[bluecell_length] - 2); // EEPROM Controller ID Save
  171. NVIC_SystemReset();
  172. case RGB_Lora_ConfigGet:
  173. Uart1_Data_Send(data,data[bluecell_length] + 3);
  174. break;
  175. case RGB_GUI_SensorDataRequest:
  176. // printf("I will give Data : ");
  177. // for(uint8_t i =0; i <data[bluecell_length] + 3; i++ )
  178. // printf("%02x ",data[i]);
  179. // printf("\n");
  180. // Uart1_Data_Send(data,data[bluecell_length] + 3);
  181. break;
  182. default:break;
  183. }
  184. LedTimerCnt = 0;
  185. }
  186. void RGB_Sensor_LED_Alarm_ON(uint8_t id ){
  187. switch(id){
  188. case 0:// 모든 LED의 전원을 ON
  189. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_RESET);
  190. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_RESET);
  191. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_RESET);
  192. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_RESET);
  193. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_RESET);
  194. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_RESET);
  195. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_RESET);
  196. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_RESET);
  197. break;
  198. case 1:
  199. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_RESET);
  200. break;
  201. case 2:
  202. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_RESET);
  203. break;
  204. case 3:
  205. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_RESET);
  206. break;
  207. case 4:
  208. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_RESET);
  209. break;
  210. case 5:
  211. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_RESET);
  212. break;
  213. case 6:
  214. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_RESET);
  215. break;
  216. case 7:
  217. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_RESET);
  218. break;
  219. case 8:
  220. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_RESET);
  221. break;
  222. }
  223. }
  224. void RGB_Sensor_LED_Alarm_OFF(uint8_t id ){
  225. switch(id){
  226. case 0:// 모든 LED의 전원을 OFF
  227. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_SET);
  228. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_SET);
  229. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_SET);
  230. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_SET);
  231. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_SET);
  232. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_SET);
  233. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_SET);
  234. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_SET);
  235. break;
  236. case 1:
  237. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_SET);
  238. break;
  239. case 2:
  240. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_SET);
  241. break;
  242. case 3:
  243. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_SET);
  244. break;
  245. case 4:
  246. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_SET);
  247. break;
  248. case 5:
  249. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_SET);
  250. break;
  251. case 6:
  252. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_SET);
  253. break;
  254. case 7:
  255. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_SET);
  256. break;
  257. case 8:
  258. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_SET);
  259. break;
  260. }
  261. }
  262. void RGB_Alarm_Operate(void){
  263. uint8_t temp_warning = 0;
  264. for(uint8_t i = 0; i <= (SensorID_Cnt); i++){ /*SensorID_Cnt : Current Sensor Device Count */
  265. if(LED_Alarm[SensorID_buf[i]] == 1){
  266. HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, GPIO_PIN_SET); //표지 LED
  267. RGB_Sensor_LED_Alarm_ON(SensorID_buf[i]);
  268. temp_warning = 1;
  269. }else{
  270. RGB_Sensor_LED_Alarm_OFF(SensorID_buf[i]);
  271. }
  272. }
  273. if(temp_warning == 0){ // 8개의 Sensor가 전부 정상일 때 만 동작
  274. HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, GPIO_PIN_RESET); //표지 LED
  275. RGB_Sensor_LED_Alarm_OFF(0); //모든 Sensor가 정상일 때는 LED 가 켜지지 않는다.
  276. }
  277. }
  278. void RGB_Alarm_Check(uint8_t* data){
  279. static uint16_t Sensor_red[9] = {0,};
  280. static uint16_t Sensor_green[9] = {0,};
  281. static uint16_t Sensor_blue[9] = {0,};
  282. static uint8_t Prev_Alarm_occur;
  283. uint8_t Alarm_occur = 0;
  284. Sensor_red[data[bluecell_srcid]] = ((data[bluecell_red_H + 2] << 8)| data[bluecell_red_L + 2]);
  285. Sensor_green[data[bluecell_srcid]] = ((data[bluecell_green_H + 2] << 8)| data[bluecell_green_L + 2]);
  286. Sensor_blue[data[bluecell_srcid]] = ((data[bluecell_blue_H + 2] << 8)| data[bluecell_blue_L + 2]);
  287. for(uint8_t i = 0; i <= (SensorID_Cnt); i++){
  288. if(RGB_SensorRedLimit_Buf[SensorID_buf[i]] > Sensor_red[SensorID_buf[i]]
  289. || RGB_SensorGreenLimit_Buf[SensorID_buf[i]] > Sensor_green[SensorID_buf[i]]
  290. || RGB_SensorBlueLimit_Buf[SensorID_buf[i]] > Sensor_blue[SensorID_buf[i]]) {
  291. LED_Alarm[SensorID_buf[i]] = 1;
  292. Alarm_occur = 1;
  293. }else{
  294. LED_Alarm[SensorID_buf[i]] = 0;
  295. }
  296. }
  297. RGB_Data_Stack(&LED_Alarm[1]);
  298. if(Prev_Alarm_occur != Alarm_occur){
  299. // LoraDataSendSet(LoraTx_mode);//경고 발생 시 바로 Data 전송 하는 Option
  300. Prev_Alarm_occur = Alarm_occur;
  301. }
  302. }
  303. uint8_t RGB_DeviceStatusCheck(void){
  304. uint8_t ret = 0;
  305. // printf("SensorID_Cnt : %d ",SensorID_Cnt);
  306. for(uint8_t i = 0; i < SensorID_Cnt; i++){
  307. // printf("\n SensorID_buf[%d] : %02x ",i,SensorID_buf[i]);
  308. if(SensorID_buf[i] > 0){
  309. ret |= 0x01 << (SensorID_buf[i] - 1);
  310. }
  311. // printf("\n ret %02x \n",ret);
  312. }
  313. return ret;
  314. }
  315. uint8_t Lora_Buf[100] = {0,};
  316. #if 0 // PYJ.2019.04.14_BEGIN -- //Uart Value Data
  317. void RGB_Data_Stack(uint8_t* rgb_buf){
  318. uint8_t mynumcnt = RGB_BufCal(rgb_buf[bluecell_srcid]);
  319. Lora_Buf[bluecell_stx] = 0xbe;
  320. Lora_Buf[bluecell_type] = RGB_Lora_Data_Report;
  321. Lora_Buf[bluecell_length] = Lora_Max_Amount + 2; //length 1byte + type 1byte + RGB Data 60byte
  322. Lora_Buf[bluecell_srcid] = MyControllerID;
  323. Lora_Buf[mynumcnt] = rgb_buf[bluecell_srcid];
  324. Lora_Buf[mynumcnt + 1] = rgb_buf[bluecell_red_H + 2];
  325. Lora_Buf[mynumcnt + 2] = rgb_buf[bluecell_red_L + 2];
  326. Lora_Buf[mynumcnt + 3] = rgb_buf[bluecell_green_H + 2];
  327. Lora_Buf[mynumcnt + 4] = rgb_buf[bluecell_green_L + 2];
  328. Lora_Buf[mynumcnt + 5] = rgb_buf[bluecell_blue_H + 2];
  329. Lora_Buf[mynumcnt + 6] = rgb_buf[bluecell_blue_L + 2];
  330. LoraDataSendSet(1);
  331. }
  332. uint8_t RGB_BufCal(uint8_t srcid){
  333. uint8_t ret = 0;
  334. switch(srcid){
  335. case 1:ret = 4;break;
  336. case 2:ret = 11;break;
  337. case 3:ret = 18;break;
  338. case 4:ret = 25;break;
  339. case 5:ret = 32;break;
  340. case 6:ret = 39;break;
  341. case 7:ret = 46;break;
  342. case 8:ret = 53;break;
  343. }
  344. return ret;
  345. }
  346. #else //Uart Flag Data
  347. /*
  348. 현재 Controller 가지고 있는 RGB Sensor ID Check
  349. 현재 비정상적인 동작을 하는 Sensor 에대한 Flag 정보
  350. */
  351. void RGB_Data_Stack(uint8_t* rgb_buf){
  352. memset(&Lora_Buf[0],0x00,8);
  353. /*********************FIX DATA*************************************/
  354. Lora_Buf[bluecell_stx] = 0xbe;
  355. Lora_Buf[bluecell_srcid + 4] = 0xeb;
  356. Lora_Buf[bluecell_type] = RGB_Lora_DataResponse;
  357. Lora_Buf[bluecell_length] = Lora_Max_Amount;// RGB Data 5byte
  358. Lora_Buf[bluecell_srcid] = MyControllerID;
  359. /*********************FIX DATA*************************************/
  360. if(RGB_BufCal(SensorID_buf[0]) == 0){//아무런 Device가 존재 하지않을 때
  361. printf("Not Exist Device \n");
  362. return;
  363. }
  364. // printf("SensorID_Cnt : %d SensorID_buf[0] : %d \n",SensorID_Cnt,SensorID_buf[0]);
  365. for(uint8_t i = 0; i <= (SensorID_Cnt); i++){
  366. Lora_Buf[bluecell_srcid + 1] |= 0x01 << (SensorID_buf[i] - 1);
  367. }
  368. // printf("Lora_Buf[bluecell_srcid + 1] : %02x\n",Lora_Buf[bluecell_srcid + 1]);
  369. for(uint8_t i = 0; i < 8; i++){
  370. Lora_Buf[bluecell_srcid + 2] |= rgb_buf[i] << i ;
  371. }
  372. // printf("Lora_Buf[bluecell_srcid + 2] : %02x\n",Lora_Buf[bluecell_srcid + 2]);
  373. Lora_Buf[bluecell_srcid + 3]= STH30_CreateCrc(&Lora_Buf[bluecell_type],Lora_Buf[bluecell_length]);
  374. }
  375. /*
  376. RGB_Data_Stack에 Lora에 Data를 보내기 위해 Buffer에 Data를 쌓을 때
  377. ID 마다 Location Cnt
  378. */
  379. uint8_t RGB_BufCal(uint8_t srcid){
  380. uint8_t ret = 0;
  381. switch(srcid){
  382. case 1:ret = 4;break;
  383. case 2:ret = 7;break;
  384. case 3:ret = 10;break;
  385. case 4:ret = 13;break;
  386. case 5:ret = 16;break;
  387. case 6:ret = 29;break;
  388. case 7:ret = 32;break;
  389. case 8:ret = 35;break;
  390. }
  391. return ret;
  392. }
  393. uint8_t RGB_LimitData_Get(uint8_t id){
  394. switch(id){
  395. }
  396. }
  397. #endif // PYJ.2019.04.14_END --
  398. uint8_t datalosscnt[9] = {0,};
  399. static uint8_t temp_sensorid;
  400. static uint8_t gui_Sensorid;
  401. void RGB_Controller_Func(uint8_t* data){
  402. RGB_CMD_T type = data[bluecell_type];
  403. // static uint8_t temp_sensorid;
  404. uint8_t Result_buf[100] = {0,};
  405. uint8_t temp_gui_Sensorid = 0;
  406. uint8_t i = 0;
  407. switch(type){
  408. case RGB_Status_Data_Request:
  409. data[bluecell_srcid + 1] = SensorID_buf[temp_sensorid++];
  410. if(temp_sensorid > (SensorID_Cnt)){
  411. temp_sensorid = 0;
  412. }
  413. // datalosscnt[data[bluecell_srcid + 1]]++;
  414. // if(datalosscnt[data[bluecell_srcid + 1]] > 5 && data[bluecell_srcid + 1] != 0){
  415. // RGB_SensorIDAutoSet(1);
  416. // memset(&SensorID_buf[0],0x00,8);
  417. // }
  418. data[5] = STH30_CreateCrc(&data[bluecell_type],data[bluecell_length]);
  419. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],RGB_SensorDataRequest_Length);
  420. break;
  421. case RGB_ControllerID_SET:
  422. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  423. MyControllerID = data[bluecell_srcid]; // �긽��諛⑹쓽 SRC ID�뒗 �굹�쓽 DST ID�씠�떎.
  424. break;
  425. case RGB_SensorID_SET:
  426. RGB_SensorIDAutoSet(1);
  427. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  428. Result_buf[5] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  429. break;
  430. case RGB_SensorID_SET_Success:
  431. if(data[bluecell_length + 1] == 0)
  432. return;
  433. printf("Recognize %d Sensor\n",data[bluecell_length + 1]);
  434. SensorID_buf[SensorID_Cnt++] = data[bluecell_length + 1];
  435. break;
  436. case RGB_Status_Data_Response:
  437. datalosscnt[data[bluecell_srcid]] = 0;
  438. data[bluecell_length] += 1;
  439. RGB_Alarm_Check(&data[bluecell_stx]);
  440. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  441. Result_buf[Result_buf[bluecell_length] - 1] = RGB_DeviceStatusCheck();// Device On OFF status Send byte
  442. Result_buf[Result_buf[bluecell_length] + 0] = Lora_Buf[bluecell_srcid + 2];
  443. Result_buf[Result_buf[bluecell_length] + 1] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  444. Result_buf[Result_buf[bluecell_length] + 2] = 0xeb;
  445. break;
  446. case RGB_ControllerLimitSet:
  447. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  448. RGB_SensorRedLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_red_H] << 8) |data[bluecell_red_L]);
  449. RGB_SensorGreenLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_green_H] << 8) |data[bluecell_green_L]);
  450. RGB_SensorBlueLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_blue_H] << 8) |data[bluecell_blue_L]);
  451. Result_buf[bluecell_crc] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  452. break;
  453. case RGB_Reset:
  454. NVIC_SystemReset();
  455. break;
  456. case RGB_ID_Allocate_Request:
  457. break;
  458. case RGB_Location_Report:
  459. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  460. break;
  461. case RGB_Location_Response:
  462. Result_buf[bluecell_type] = RGB_Location_Response;
  463. Result_buf[bluecell_srcid] = data[bluecell_srcid];
  464. break;
  465. case RGB_ControllerID_GET:
  466. Result_buf[bluecell_stx] = 0xbe;
  467. Result_buf[bluecell_type] = RGB_ControllerID_GET;
  468. Result_buf[bluecell_length] = 3;
  469. Result_buf[bluecell_srcid] = MyControllerID;
  470. Result_buf[bluecell_srcid + 1] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  471. Result_buf[bluecell_srcid + 2] = 0xeb;
  472. break;
  473. case RGB_ControllerLimitGet:
  474. Result_buf[bluecell_stx] = 0xbe;
  475. Result_buf[bluecell_type] = RGB_ControllerLimitGet;
  476. Result_buf[bluecell_length] = 8;
  477. Result_buf[bluecell_srcid + 0] = (RGB_SensorRedLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  478. Result_buf[bluecell_srcid + 1] = RGB_SensorRedLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  479. Result_buf[bluecell_srcid + 2] = (RGB_SensorGreenLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  480. Result_buf[bluecell_srcid + 3] = RGB_SensorGreenLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  481. Result_buf[bluecell_srcid + 4] = (RGB_SensorBlueLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  482. Result_buf[bluecell_srcid + 5] = RGB_SensorBlueLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  483. Result_buf[bluecell_srcid + 6] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  484. Result_buf[bluecell_srcid + 7] = 0xeb;
  485. break;
  486. case RGB_Lora_DataRequest:
  487. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  488. Result_buf[bluecell_type] = RGB_Lora_DataResponse;
  489. break;
  490. case RGB_Lora_ConfigSet:
  491. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  492. data[(data[bluecell_length] + 3)]=STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  493. break;
  494. case RGB_Lora_ConfigGet:
  495. Result_buf[bluecell_stx] = 0xbe;
  496. Result_buf[bluecell_type] = RGB_Lora_ConfigGet;
  497. Result_buf[bluecell_length] = 7;
  498. Result_buf[bluecell_srcid + 0] = SX1276.frequency;
  499. Result_buf[bluecell_srcid + 1] = SX1276.LoRa_Pa_boost;
  500. Result_buf[bluecell_srcid + 2] = SX1276.LoRa_Rate; //SF
  501. Result_buf[bluecell_srcid + 3] = SX1276.LoRa_BW;
  502. Result_buf[bluecell_srcid + 4] = SX1276.LoRa_Lna;
  503. Result_buf[bluecell_srcid + 5] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  504. Result_buf[bluecell_srcid + 6] = 0xeb;
  505. break;
  506. case RGB_GUI_SensorDataRequest:
  507. // printf("%s ",__func__);
  508. // temp_gui_Sensorid = gui_Sensorid++;
  509. // memcpy(&Result_buf[bluecell_stx],&RGB_SensorDataBuf[SensorID_buf[temp_gui_Sensorid]][bluecell_stx],RGB_SensorDataBuf[SensorID_buf[temp_gui_Sensorid]][bluecell_length] + 3);
  510. // if(gui_Sensorid > (SensorID_Cnt)){
  511. // gui_Sensorid = 0;
  512. // }
  513. //
  514. // Result_buf[bluecell_type] = RGB_GUI_SensorDataRequest;
  515. // Result_buf[Result_buf[bluecell_length] + 1] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  516. break;
  517. default:
  518. break;
  519. }
  520. RGB_Response_Func(&Result_buf[bluecell_stx]);
  521. return;
  522. }