RGB_Controller.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. #include "RGB_Controller.h"
  2. void RGB_Response_Func(uint8_t* data);
  3. uint8_t RGB_BufCal(uint8_t srcid);
  4. void RGB_Alarm_Operate(void);
  5. void RGB_Data_Stack(uint8_t* rgb_buf);
  6. uint16_t RGB_Location_Address_Check(uint8_t id);
  7. uint8_t SensorID_Cnt = 0;
  8. uint8_t SensorID_buf[8] = {0,};
  9. uint16_t RGB_SensorRedLimit_Buf[9]={0,};
  10. uint16_t RGB_SensorGreenLimit_Buf[9]={0,};
  11. uint16_t RGB_SensorBlueLimit_Buf[9]={0,};
  12. uint8_t LED_Alarm[9] = {0,};
  13. uint8_t RGB_Location_Buf[9][50] = {0};
  14. void RGB_Data_Init(void){
  15. MyControllerID = M24C32_Data_Read(&hi2c2,MY_ID_ADDRESS);
  16. for(uint8_t i = 0; i < 8; i++){
  17. RGB_SensorRedLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_RED_H_ADDRESS + (6 * i)) << 8);
  18. RGB_SensorRedLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_RED_L_ADDRESS + (6 * i));
  19. }
  20. for(uint8_t i = 0; i < 8; i++){
  21. RGB_SensorGreenLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_GREEN_H_ADDRESS + (6 * i)) << 8);
  22. RGB_SensorGreenLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_GREEN_L_ADDRESS + (6 * i));
  23. }
  24. for(uint8_t i = 0; i < 8; i++){
  25. RGB_SensorBlueLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_BLUE_H_ADDRESS + (6 * i)) << 8);
  26. RGB_SensorBlueLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_BLUE_L_ADDRESS + (6 * i));
  27. }
  28. for(uint8_t i = 0; i < 8; i++){
  29. for(uint8_t aa= 0; aa < 50; aa++)
  30. RGB_Location_Buf[i + 1][aa] = M24C32_Data_Read(&hi2c2,RGB_Location_Address_Check(i + 1) + aa);
  31. }
  32. printf("MY id is %d \n",MyControllerID);
  33. for(uint8_t i = 1; i <= 8; i++){
  34. printf("RGB_SensorRedLimit_Buf[%d] : %04x\n",i,RGB_SensorRedLimit_Buf[i]);
  35. printf("RGB_SensorGreenLimit_Buf[%d] : %04x\n",i,RGB_SensorGreenLimit_Buf[i]);
  36. printf("RGB_SensorBlueLimit_Buf[%d] : %04x\n",i,RGB_SensorBlueLimit_Buf[i]);
  37. }
  38. }
  39. uint16_t RGB_Limit_Address_Check(uint8_t id){
  40. uint16_t ret = 0;
  41. switch(id){
  42. case 1: ret = RGB1_LIMIT_RED_H_ADDRESS;break;
  43. case 2: ret = RGB2_LIMIT_RED_H_ADDRESS;break;
  44. case 3: ret = RGB3_LIMIT_RED_H_ADDRESS;break;
  45. case 4: ret = RGB4_LIMIT_RED_H_ADDRESS;break;
  46. case 5: ret = RGB5_LIMIT_RED_H_ADDRESS;break;
  47. case 6: ret = RGB6_LIMIT_RED_H_ADDRESS;break;
  48. case 7: ret = RGB7_LIMIT_RED_H_ADDRESS;break;
  49. case 8: ret = RGB8_LIMIT_RED_H_ADDRESS;break;
  50. }
  51. return ret;
  52. }
  53. uint16_t RGB_Location_Address_Check(uint8_t id){
  54. uint16_t ret = 0;
  55. switch(id){
  56. case 1: ret = RGB1_LOCATION_ADDRESS;break;
  57. case 2: ret = RGB2_LOCATION_ADDRESS;break;
  58. case 3: ret = RGB3_LOCATION_ADDRESS;break;
  59. case 4: ret = RGB4_LOCATION_ADDRESS;break;
  60. case 5: ret = RGB5_LOCATION_ADDRESS;break;
  61. case 6: ret = RGB6_LOCATION_ADDRESS;break;
  62. case 7: ret = RGB7_LOCATION_ADDRESS;break;
  63. case 8: ret = RGB8_LOCATION_ADDRESS;break;
  64. }
  65. return ret;
  66. }
  67. void RGB_Response_Func(uint8_t* data){
  68. RGB_CMD_T type = data[bluecell_type];
  69. uint16_t temp = 0;
  70. LoraDataRequest_t Lora_Tempdata;
  71. #if 0
  72. for(uint8_t i = 0; i < 10; i++){
  73. printf("%02x ",data[i]);
  74. }
  75. #endif
  76. switch(type){
  77. case RGB_Status_Data_Request:
  78. Uart2_Data_Send(data,RGB_SensorDataRequest_Length);
  79. break;
  80. case RGB_ControllerID_SET:
  81. Uart1_Data_Send(data,RGB_ControllerID_SET_Length);
  82. M24C32_Data_Write(&hi2c2,&MyControllerID,MY_ID_ADDRESS,1); // EEPROM Controller ID Save
  83. break;
  84. case RGB_SensorID_SET:
  85. Uart2_Data_Send(data,RGB_SensorIDAutoSetRequest_Length);
  86. break;
  87. case RGB_Status_Data_Response:
  88. Uart1_Data_Send(data,data[bluecell_length] + 3);
  89. break;
  90. case RGB_ControllerLimitSet:
  91. Uart1_Data_Send(data,data[bluecell_length] + 3);
  92. M24C32_Data_Write(&hi2c2,&data[bluecell_red_H],RGB_Limit_Address_Check(data[bluecell_dstid]),6); // EEPROM Controller ID Save
  93. break;
  94. case RGB_Sensor_Start:
  95. case RGB_Sensor_Check:
  96. Uart2_Data_Send(data,RGB_SensorIDAutoSetRequest_Length);
  97. break;
  98. case RGB_Sensor_Ack:
  99. Uart2_Data_Send(data,data[bluecell_length] + 3);
  100. break;
  101. case RGB_Reset:
  102. case RGB_SensorID_SET_Success:
  103. case RGB_ID_Allocate_Request:
  104. case RGB_Lora_ControllerIDAmount_Report:
  105. break;
  106. case RGB_Location_Report:
  107. M24C32_Data_Write(&hi2c2,&data[Location_stx],RGB_Location_Address_Check(data[bluecell_srcid]),data[bluecell_length] + 3); // EEPROM Controller ID Save
  108. break;
  109. case RGB_Location_Response:
  110. data[bluecell_length] = M24C32_Data_Read(&hi2c2,RGB_Location_Address_Check(data[bluecell_dstid]) + 2); // EEPROM Controller ID Save
  111. temp = RGB_Location_Address_Check(data[bluecell_srcid]);
  112. for(uint8_t i = 0; i < (data[bluecell_length] + 3); i++){
  113. data[i] = M24C32_Data_Read(&hi2c2,(temp + i)); // EEPROM Controller ID Save
  114. }
  115. data[bluecell_type] = RGB_Location_Response;
  116. data[data[bluecell_length] + 1] = STH30_CreateCrc(&data[bluecell_type],data[bluecell_length]);
  117. Uart1_Data_Send(data,data[bluecell_length] + 3);
  118. break;
  119. case RGB_ControllerID_GET:
  120. Uart1_Data_Send(data,data[bluecell_length] + 3);
  121. break;
  122. case RGB_ControllerLimitGet:
  123. Uart1_Data_Send(data,data[bluecell_length] + 3);
  124. break;
  125. case RGB_Lora_DataResponse:
  126. memcpy(&Lora_Tempdata.Request_stx,&data[bluecell_stx],data[bluecell_length] + 3);
  127. if(Lora_Tempdata.Request_dstid == MyControllerID)
  128. LoraDataSendSet(1);
  129. else
  130. return;
  131. break;
  132. default:break;
  133. }
  134. }
  135. void RGB_Sensor_LED_Alarm_ON(uint8_t id ){
  136. switch(id){
  137. case 0:// 모든 LED의 전원을 ON
  138. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_RESET);
  139. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_RESET);
  140. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_RESET);
  141. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_RESET);
  142. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_RESET);
  143. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_RESET);
  144. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_RESET);
  145. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_RESET);
  146. break;
  147. case 1:
  148. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_RESET);
  149. break;
  150. case 2:
  151. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_RESET);
  152. break;
  153. case 3:
  154. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_RESET);
  155. break;
  156. case 4:
  157. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_RESET);
  158. break;
  159. case 5:
  160. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_RESET);
  161. break;
  162. case 6:
  163. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_RESET);
  164. break;
  165. case 7:
  166. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_RESET);
  167. break;
  168. case 8:
  169. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_RESET);
  170. break;
  171. }
  172. }
  173. void RGB_Sensor_LED_Alarm_OFF(uint8_t id ){
  174. switch(id){
  175. case 0:// 모든 LED의 전원을 OFF
  176. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_SET);
  177. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_SET);
  178. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_SET);
  179. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_SET);
  180. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_SET);
  181. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_SET);
  182. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_SET);
  183. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_SET);
  184. break;
  185. case 1:
  186. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_SET);
  187. break;
  188. case 2:
  189. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_SET);
  190. break;
  191. case 3:
  192. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_SET);
  193. break;
  194. case 4:
  195. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_SET);
  196. break;
  197. case 5:
  198. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_SET);
  199. break;
  200. case 6:
  201. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_SET);
  202. break;
  203. case 7:
  204. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_SET);
  205. break;
  206. case 8:
  207. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_SET);
  208. break;
  209. }
  210. }
  211. void RGB_Alarm_Operate(void){
  212. uint8_t temp_warning = 0;
  213. for(uint8_t i = 1; i <= (SensorID_Cnt); i++){
  214. if(LED_Alarm[SensorID_buf[i]] == 1){
  215. HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, GPIO_PIN_SET); //표지 LED
  216. RGB_Sensor_LED_Alarm_ON(SensorID_buf[i]);
  217. temp_warning = 1;
  218. }else{
  219. RGB_Sensor_LED_Alarm_OFF(SensorID_buf[i]);
  220. }
  221. }
  222. if(temp_warning == 0){ // 8개의 Sensor가 전부 정상일 때 만 동작
  223. HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, GPIO_PIN_RESET); //표지 LED
  224. RGB_Sensor_LED_Alarm_OFF(0); //모든 Sensor가 정상일 때는 LED 가 켜지지 않는다.
  225. }
  226. }
  227. void RGB_Alarm_Check(uint8_t* data){
  228. static uint16_t Sensor_red[9] = {0,};
  229. static uint16_t Sensor_green[9] = {0,};
  230. static uint16_t Sensor_blue[9] = {0,};
  231. static uint8_t Prev_Alarm_occur;
  232. uint8_t Alarm_occur = 0;
  233. Sensor_red[data[bluecell_srcid]] = ((data[bluecell_red_H + 2] << 8)| data[bluecell_red_L + 2]);
  234. Sensor_green[data[bluecell_srcid]] = ((data[bluecell_green_H + 2] << 8)| data[bluecell_green_L + 2]);
  235. Sensor_blue[data[bluecell_srcid]] = ((data[bluecell_blue_H + 2] << 8)| data[bluecell_blue_L + 2]);
  236. for(uint8_t i = 1; i <= (SensorID_Cnt); i++){
  237. if(RGB_SensorRedLimit_Buf[SensorID_buf[i]] >= Sensor_red[SensorID_buf[i]]
  238. || RGB_SensorGreenLimit_Buf[SensorID_buf[i]] >= Sensor_green[SensorID_buf[i]]
  239. || RGB_SensorBlueLimit_Buf[SensorID_buf[i]] >= Sensor_blue[SensorID_buf[i]]) {
  240. LED_Alarm[SensorID_buf[i]] = 1;
  241. Alarm_occur = 1;
  242. }else{
  243. LED_Alarm[SensorID_buf[i]] = 0;
  244. }
  245. }
  246. RGB_Data_Stack(&LED_Alarm[1]);
  247. if(Prev_Alarm_occur != Alarm_occur){
  248. // LoraDataSendSet(1);
  249. Prev_Alarm_occur = Alarm_occur;
  250. }
  251. }
  252. uint8_t RGB_DeviceStatusCheck(void){
  253. uint8_t ret = 0;
  254. for(uint8_t i = 1; i <= SensorID_Cnt; i++){
  255. if(SensorID_buf[i] > 0){
  256. ret += 0x01 << (SensorID_buf[i] - 1);
  257. }
  258. }
  259. return ret;
  260. }
  261. uint8_t Lora_Buf[100] = {0,};
  262. #if 0 // PYJ.2019.04.14_BEGIN -- //Uart Value Data
  263. void RGB_Data_Stack(uint8_t* rgb_buf){
  264. uint8_t mynumcnt = RGB_BufCal(rgb_buf[bluecell_srcid]);
  265. Lora_Buf[bluecell_stx] = 0xbe;
  266. Lora_Buf[bluecell_type] = RGB_Lora_Data_Report;
  267. Lora_Buf[bluecell_length] = Lora_Max_Amount + 2; //length 1byte + type 1byte + RGB Data 60byte
  268. Lora_Buf[bluecell_srcid] = MyControllerID;
  269. Lora_Buf[mynumcnt] = rgb_buf[bluecell_srcid];
  270. Lora_Buf[mynumcnt + 1] = rgb_buf[bluecell_red_H + 2];
  271. Lora_Buf[mynumcnt + 2] = rgb_buf[bluecell_red_L + 2];
  272. Lora_Buf[mynumcnt + 3] = rgb_buf[bluecell_green_H + 2];
  273. Lora_Buf[mynumcnt + 4] = rgb_buf[bluecell_green_L + 2];
  274. Lora_Buf[mynumcnt + 5] = rgb_buf[bluecell_blue_H + 2];
  275. Lora_Buf[mynumcnt + 6] = rgb_buf[bluecell_blue_L + 2];
  276. LoraDataSendSet(1);
  277. }
  278. uint8_t RGB_BufCal(uint8_t srcid){
  279. uint8_t ret = 0;
  280. switch(srcid){
  281. case 1:ret = 4;break;
  282. case 2:ret = 11;break;
  283. case 3:ret = 18;break;
  284. case 4:ret = 25;break;
  285. case 5:ret = 32;break;
  286. case 6:ret = 39;break;
  287. case 7:ret = 46;break;
  288. case 8:ret = 53;break;
  289. }
  290. return ret;
  291. }
  292. #else //Uart Flag Data
  293. /*
  294. 현재 Controller 가지고 있는 RGB Sensor ID Check
  295. 현재 비정상적인 동작을 하는 Sensor 에대한 Flag 정보
  296. */
  297. void RGB_Data_Stack(uint8_t* rgb_buf){
  298. memset(&Lora_Buf[0],0x00,8);
  299. /*********************FIX DATA*************************************/
  300. Lora_Buf[bluecell_stx] = 0xbe;
  301. Lora_Buf[bluecell_srcid + 4] = 0xeb;
  302. Lora_Buf[bluecell_type] = RGB_Lora_DataResponse;
  303. Lora_Buf[bluecell_length] = Lora_Max_Amount;// RGB Data 5byte
  304. Lora_Buf[bluecell_srcid] = MyControllerID;
  305. /*********************FIX DATA*************************************/
  306. if(RGB_BufCal(SensorID_buf[1]) == 0){//아무런 Device가 존재 하지않을 때
  307. printf("Not Exist Device \n");
  308. return;
  309. }
  310. for(uint8_t i = 1; i <= (SensorID_Cnt); i++){
  311. Lora_Buf[bluecell_srcid + 1] |= 0x01 << (SensorID_buf[i] - 1);
  312. }
  313. for(uint8_t i = 0; i < 8; i++){
  314. Lora_Buf[bluecell_srcid + 2] |= rgb_buf[i] << i ;
  315. }
  316. Lora_Buf[bluecell_srcid + 3]= STH30_CreateCrc(&Lora_Buf[bluecell_type],Lora_Buf[bluecell_length]);
  317. }
  318. /*
  319. RGB_Data_Stack에 Lora에 Data를 보내기 위해 Buffer에 Data를 쌓을 때
  320. ID 마다 Location Cnt
  321. */
  322. uint8_t RGB_BufCal(uint8_t srcid){
  323. uint8_t ret = 0;
  324. switch(srcid){
  325. case 1:ret = 4;break;
  326. case 2:ret = 7;break;
  327. case 3:ret = 10;break;
  328. case 4:ret = 13;break;
  329. case 5:ret = 16;break;
  330. case 6:ret = 29;break;
  331. case 7:ret = 32;break;
  332. case 8:ret = 35;break;
  333. }
  334. return ret;
  335. }
  336. uint8_t RGB_LimitData_Get(uint8_t id){
  337. switch(id){
  338. }
  339. }
  340. #endif // PYJ.2019.04.14_END --
  341. uint8_t datalosscnt[9] = {0,};
  342. void RGB_Controller_Func(uint8_t* data){
  343. RGB_CMD_T type = data[bluecell_type];
  344. // static uint8_t temp_sensorid;
  345. uint8_t Result_buf[100] = {0,};
  346. uint8_t i = 0;
  347. switch(type){
  348. case RGB_Status_Data_Request:
  349. datalosscnt[data[bluecell_srcid + 1]]++;
  350. if(datalosscnt[data[bluecell_srcid + 1]] > 3 && data[bluecell_srcid + 1] != 0){
  351. RGB_SensorIDAutoSet(1);
  352. memset(&SensorID_buf[0],0x00,8);
  353. }
  354. data[5] = STH30_CreateCrc(&data[bluecell_type],data[bluecell_length]);
  355. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],RGB_SensorDataRequest_Length);
  356. break;
  357. case RGB_ControllerID_SET:
  358. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  359. MyControllerID = data[bluecell_srcid]; // �긽��諛⑹쓽 SRC ID�뒗 �굹�쓽 DST ID�씠�떎.
  360. break;
  361. case RGB_SensorID_SET:
  362. RGB_SensorIDAutoSet(1);
  363. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  364. Result_buf[5] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  365. break;
  366. case RGB_SensorID_SET_Success:
  367. SensorID_Cnt++;
  368. SensorID_buf[SensorID_Cnt] = data[bluecell_length + 1];
  369. break;
  370. case RGB_Status_Data_Response:
  371. datalosscnt[data[bluecell_srcid]] = 0;
  372. data[bluecell_length] += 1;
  373. RGB_Alarm_Check(&data[bluecell_stx]);
  374. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  375. Result_buf[Result_buf[bluecell_length] - 1] = RGB_DeviceStatusCheck();// Device On OFF status Send byte
  376. Result_buf[Result_buf[bluecell_length] + 0] = Lora_Buf[bluecell_srcid + 2];
  377. Result_buf[Result_buf[bluecell_length] + 1] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  378. Result_buf[Result_buf[bluecell_length] + 2] = 0xeb;
  379. break;
  380. case RGB_ControllerLimitSet:
  381. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  382. RGB_SensorRedLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_red_H] << 8) |data[bluecell_red_L]);
  383. RGB_SensorGreenLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_green_H] << 8) |data[bluecell_green_L]);
  384. RGB_SensorBlueLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_blue_H] << 8) |data[bluecell_blue_L]);
  385. Result_buf[bluecell_crc] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  386. break;
  387. case RGB_Reset:
  388. NVIC_SystemReset();
  389. break;
  390. case RGB_ID_Allocate_Request:
  391. break;
  392. case RGB_Location_Report:
  393. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  394. break;
  395. case RGB_Location_Response:
  396. Result_buf[bluecell_type] = RGB_Location_Response;
  397. Result_buf[bluecell_srcid] = data[bluecell_srcid];
  398. break;
  399. case RGB_ControllerID_GET:
  400. Result_buf[bluecell_stx] = 0xbe;
  401. Result_buf[bluecell_type] = RGB_ControllerID_GET;
  402. Result_buf[bluecell_length] = 3;
  403. Result_buf[bluecell_srcid] = MyControllerID;
  404. Result_buf[bluecell_srcid + 1] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  405. Result_buf[bluecell_srcid + 2] = 0xeb;
  406. break;
  407. case RGB_ControllerLimitGet:
  408. Result_buf[bluecell_stx] = 0xbe;
  409. Result_buf[bluecell_type] = RGB_ControllerLimitGet;
  410. Result_buf[bluecell_length] = 8;
  411. Result_buf[bluecell_srcid + 0] = (RGB_SensorRedLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  412. Result_buf[bluecell_srcid + 1] = RGB_SensorRedLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  413. Result_buf[bluecell_srcid + 2] = (RGB_SensorGreenLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  414. Result_buf[bluecell_srcid + 3] = RGB_SensorGreenLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  415. Result_buf[bluecell_srcid + 4] = (RGB_SensorBlueLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  416. Result_buf[bluecell_srcid + 5] = RGB_SensorBlueLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  417. Result_buf[bluecell_srcid + 6] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  418. Result_buf[bluecell_srcid + 7] = 0xeb;
  419. break;
  420. case RGB_Lora_DataRequest:
  421. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  422. Result_buf[bluecell_type] = RGB_Lora_DataResponse;
  423. break;
  424. default:
  425. break;
  426. }
  427. RGB_Response_Func(&Result_buf[bluecell_stx]);
  428. return;
  429. }