RGB_Controller.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. #include "RGB_Controller.h"
  2. void RGB_Response_Func(uint8_t* data);
  3. uint8_t RGB_BufCal(uint8_t srcid);
  4. void RGB_Alarm_Operate(void);
  5. void RGB_Data_Stack(uint8_t* rgb_buf);
  6. uint16_t RGB_Location_Address_Check(uint8_t id);
  7. uint8_t SensorID_Cnt = 0;
  8. uint8_t SensorID_buf[8] = {0,};
  9. uint16_t RGB_SensorRedLimit_Buf[9]={0,};
  10. uint16_t RGB_SensorGreenLimit_Buf[9]={0,};
  11. uint16_t RGB_SensorBlueLimit_Buf[9]={0,};
  12. uint8_t LED_Alarm[9] = {0,};
  13. uint8_t RGB_Location_Buf[9][50] = {0};
  14. void RGB_Data_Init(void){
  15. MyControllerID = M24C32_Data_Read(&hi2c2,MY_ID_ADDRESS);
  16. for(uint8_t i = 0; i < 8; i++){
  17. RGB_SensorRedLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_RED_H_ADDRESS + (6 * i)) << 8);
  18. RGB_SensorRedLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_RED_L_ADDRESS + (6 * i));
  19. }
  20. for(uint8_t i = 0; i < 8; i++){
  21. RGB_SensorGreenLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_GREEN_H_ADDRESS + (6 * i)) << 8);
  22. RGB_SensorGreenLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_GREEN_L_ADDRESS + (6 * i));
  23. }
  24. for(uint8_t i = 0; i < 8; i++){
  25. RGB_SensorBlueLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_BLUE_H_ADDRESS + (6 * i)) << 8);
  26. RGB_SensorBlueLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_BLUE_L_ADDRESS + (6 * i));
  27. }
  28. for(uint8_t i = 0; i < 8; i++){
  29. for(uint8_t aa= 0; aa < 50; aa++)
  30. RGB_Location_Buf[i + 1][aa] = M24C32_Data_Read(&hi2c2,RGB_Location_Address_Check(i + 1) + aa);
  31. }
  32. printf("MY id is %d \n",MyControllerID);
  33. for(uint8_t i = 1; i <= 8; i++){
  34. printf("RGB_SensorRedLimit_Buf[%d] : %04x\n",i,RGB_SensorRedLimit_Buf[i]);
  35. printf("RGB_SensorGreenLimit_Buf[%d] : %04x\n",i,RGB_SensorGreenLimit_Buf[i]);
  36. printf("RGB_SensorBlueLimit_Buf[%d] : %04x\n",i,RGB_SensorBlueLimit_Buf[i]);
  37. }
  38. }
  39. uint16_t RGB_Limit_Address_Check(uint8_t id){
  40. uint16_t ret = 0;
  41. switch(id){
  42. case 1: ret = RGB1_LIMIT_RED_H_ADDRESS;break;
  43. case 2: ret = RGB2_LIMIT_RED_H_ADDRESS;break;
  44. case 3: ret = RGB3_LIMIT_RED_H_ADDRESS;break;
  45. case 4: ret = RGB4_LIMIT_RED_H_ADDRESS;break;
  46. case 5: ret = RGB5_LIMIT_RED_H_ADDRESS;break;
  47. case 6: ret = RGB6_LIMIT_RED_H_ADDRESS;break;
  48. case 7: ret = RGB7_LIMIT_RED_H_ADDRESS;break;
  49. case 8: ret = RGB8_LIMIT_RED_H_ADDRESS;break;
  50. }
  51. return ret;
  52. }
  53. uint16_t RGB_Location_Address_Check(uint8_t id){
  54. uint16_t ret = 0;
  55. switch(id){
  56. case 1: ret = RGB1_LOCATION_ADDRESS;break;
  57. case 2: ret = RGB2_LOCATION_ADDRESS;break;
  58. case 3: ret = RGB3_LOCATION_ADDRESS;break;
  59. case 4: ret = RGB4_LOCATION_ADDRESS;break;
  60. case 5: ret = RGB5_LOCATION_ADDRESS;break;
  61. case 6: ret = RGB6_LOCATION_ADDRESS;break;
  62. case 7: ret = RGB7_LOCATION_ADDRESS;break;
  63. case 8: ret = RGB8_LOCATION_ADDRESS;break;
  64. }
  65. return ret;
  66. }
  67. void RGB_Response_Func(uint8_t* data){
  68. RGB_CMD_T type = data[bluecell_type];
  69. uint16_t temp = 0;
  70. #if 0
  71. for(uint8_t i = 0; i < 10; i++){
  72. printf("%02x ",data[i]);
  73. }
  74. #endif
  75. switch(type){
  76. case RGB_Status_Data_Request:
  77. Uart2_Data_Send(data,RGB_SensorDataRequest_Length);
  78. break;
  79. case RGB_ControllerID_SET:
  80. Uart1_Data_Send(data,RGB_ControllerID_SET_Length);
  81. M24C32_Data_Write(&hi2c2,&MyControllerID,MY_ID_ADDRESS,1); // EEPROM Controller ID Save
  82. break;
  83. case RGB_SensorID_SET:
  84. Uart2_Data_Send(data,RGB_SensorIDAutoSetRequest_Length);
  85. break;
  86. case RGB_Status_Data_Response:
  87. Uart1_Data_Send(data,data[bluecell_length] + 3);
  88. break;
  89. case RGB_ControllerLimitSet:
  90. Uart1_Data_Send(data,data[bluecell_length] + 3);
  91. M24C32_Data_Write(&hi2c2,&data[bluecell_red_H],RGB_Limit_Address_Check(data[bluecell_dstid]),6); // EEPROM Controller ID Save
  92. break;
  93. case RGB_Sensor_Start:
  94. case RGB_Sensor_Check:
  95. Uart2_Data_Send(data,RGB_SensorIDAutoSetRequest_Length);
  96. break;
  97. case RGB_Sensor_Ack:
  98. Uart2_Data_Send(data,data[bluecell_length] + 3);
  99. break;
  100. case RGB_Reset:
  101. case RGB_SensorID_SET_Success:
  102. case RGB_ID_Allocate_Request:
  103. case RGB_Lora_Data_Report:
  104. break;
  105. case RGB_Location_Report:
  106. M24C32_Data_Write(&hi2c2,&data[Location_stx],RGB_Location_Address_Check(data[bluecell_srcid]),data[bluecell_length] + 3); // EEPROM Controller ID Save
  107. break;
  108. case RGB_Location_Response:
  109. data[bluecell_length] = M24C32_Data_Read(&hi2c2,RGB_Location_Address_Check(data[bluecell_dstid]) + 2); // EEPROM Controller ID Save
  110. temp = RGB_Location_Address_Check(data[bluecell_srcid]);
  111. for(uint8_t i = 0; i < (data[bluecell_length] + 3); i++){
  112. data[i] = M24C32_Data_Read(&hi2c2,(temp + i)); // EEPROM Controller ID Save
  113. }
  114. data[bluecell_type] = RGB_Location_Response;
  115. data[data[bluecell_length] + 1] = STH30_CreateCrc(&data[bluecell_type],data[bluecell_length]);
  116. Uart1_Data_Send(data,data[bluecell_length] + 3);
  117. break;
  118. case RGB_ControllerID_GET:
  119. Uart1_Data_Send(data,data[bluecell_length] + 3);
  120. break;
  121. case RGB_ControllerLimitGet:
  122. Uart1_Data_Send(data,data[bluecell_length] + 3);
  123. break;
  124. default:break;
  125. }
  126. }
  127. void RGB_Sensor_LED_Alarm_ON(uint8_t id ){
  128. switch(id){
  129. case 0:// 모든 LED의 전원을 ON
  130. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_RESET);
  131. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_RESET);
  132. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_RESET);
  133. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_RESET);
  134. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_RESET);
  135. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_RESET);
  136. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_RESET);
  137. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_RESET);
  138. break;
  139. case 1:
  140. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_RESET);
  141. break;
  142. case 2:
  143. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_RESET);
  144. break;
  145. case 3:
  146. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_RESET);
  147. break;
  148. case 4:
  149. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_RESET);
  150. break;
  151. case 5:
  152. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_RESET);
  153. break;
  154. case 6:
  155. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_RESET);
  156. break;
  157. case 7:
  158. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_RESET);
  159. break;
  160. case 8:
  161. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_RESET);
  162. break;
  163. }
  164. }
  165. void RGB_Sensor_LED_Alarm_OFF(uint8_t id ){
  166. switch(id){
  167. case 0:// 모든 LED의 전원을 OFF
  168. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_SET);
  169. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_SET);
  170. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_SET);
  171. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_SET);
  172. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_SET);
  173. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_SET);
  174. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_SET);
  175. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_SET);
  176. break;
  177. case 1:
  178. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_SET);
  179. break;
  180. case 2:
  181. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_SET);
  182. break;
  183. case 3:
  184. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_SET);
  185. break;
  186. case 4:
  187. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_SET);
  188. break;
  189. case 5:
  190. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_SET);
  191. break;
  192. case 6:
  193. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_SET);
  194. break;
  195. case 7:
  196. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_SET);
  197. break;
  198. case 8:
  199. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_SET);
  200. break;
  201. }
  202. }
  203. void RGB_Alarm_Operate(void){
  204. uint8_t temp_warning = 0;
  205. for(uint8_t i = 1; i <= (SensorID_Cnt); i++){
  206. if(LED_Alarm[SensorID_buf[i]] == 1){
  207. HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, GPIO_PIN_SET); //표지 LED
  208. RGB_Sensor_LED_Alarm_ON(SensorID_buf[i]);
  209. temp_warning = 1;
  210. }else{
  211. RGB_Sensor_LED_Alarm_OFF(SensorID_buf[i]);
  212. }
  213. }
  214. if(temp_warning == 0){ // 8개의 Sensor가 전부 정상일 때 만 동작
  215. HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, GPIO_PIN_RESET); //표지 LED
  216. RGB_Sensor_LED_Alarm_OFF(0); //모든 Sensor가 정상일 때는 LED 가 켜지지 않는다.
  217. }
  218. }
  219. void RGB_Alarm_Check(uint8_t* data){
  220. static uint16_t Sensor_red[9] = {0,};
  221. static uint16_t Sensor_green[9] = {0,};
  222. static uint16_t Sensor_blue[9] = {0,};
  223. static uint8_t Prev_Alarm_occur;
  224. uint8_t Alarm_occur = 0;
  225. Sensor_red[data[bluecell_srcid]] = ((data[bluecell_red_H + 2] << 8)| data[bluecell_red_L + 2]);
  226. Sensor_green[data[bluecell_srcid]] = ((data[bluecell_green_H + 2] << 8)| data[bluecell_green_L + 2]);
  227. Sensor_blue[data[bluecell_srcid]] = ((data[bluecell_blue_H + 2] << 8)| data[bluecell_blue_L + 2]);
  228. for(uint8_t i = 1; i <= (SensorID_Cnt); i++){
  229. if(RGB_SensorRedLimit_Buf[SensorID_buf[i]] >= Sensor_red[SensorID_buf[i]]
  230. || RGB_SensorGreenLimit_Buf[SensorID_buf[i]] >= Sensor_green[SensorID_buf[i]]
  231. || RGB_SensorBlueLimit_Buf[SensorID_buf[i]] >= Sensor_blue[SensorID_buf[i]]) {
  232. LED_Alarm[SensorID_buf[i]] = 1;
  233. Alarm_occur = 1;
  234. }else{
  235. LED_Alarm[SensorID_buf[i]] = 0;
  236. }
  237. }
  238. RGB_Data_Stack(&LED_Alarm[1]);
  239. if(Prev_Alarm_occur != Alarm_occur){
  240. // LoraDataSendSet(1);
  241. Prev_Alarm_occur = Alarm_occur;
  242. }
  243. }
  244. uint8_t RGB_DeviceStatusCheck(void){
  245. uint8_t ret = 0;
  246. for(uint8_t i = 1; i <= SensorID_Cnt; i++){
  247. if(SensorID_buf[i] > 0){
  248. ret += 0x01 << (SensorID_buf[i] - 1);
  249. }
  250. }
  251. return ret;
  252. }
  253. uint8_t Lora_Buf[100] = {0,};
  254. #if 0 // PYJ.2019.04.14_BEGIN -- //Uart Value Data
  255. void RGB_Data_Stack(uint8_t* rgb_buf){
  256. uint8_t mynumcnt = RGB_BufCal(rgb_buf[bluecell_srcid]);
  257. Lora_Buf[bluecell_stx] = 0xbe;
  258. Lora_Buf[bluecell_type] = RGB_Lora_Data_Report;
  259. Lora_Buf[bluecell_length] = Lora_Max_Amount + 2; //length 1byte + type 1byte + RGB Data 60byte
  260. Lora_Buf[bluecell_srcid] = MyControllerID;
  261. Lora_Buf[mynumcnt] = rgb_buf[bluecell_srcid];
  262. Lora_Buf[mynumcnt + 1] = rgb_buf[bluecell_red_H + 2];
  263. Lora_Buf[mynumcnt + 2] = rgb_buf[bluecell_red_L + 2];
  264. Lora_Buf[mynumcnt + 3] = rgb_buf[bluecell_green_H + 2];
  265. Lora_Buf[mynumcnt + 4] = rgb_buf[bluecell_green_L + 2];
  266. Lora_Buf[mynumcnt + 5] = rgb_buf[bluecell_blue_H + 2];
  267. Lora_Buf[mynumcnt + 6] = rgb_buf[bluecell_blue_L + 2];
  268. LoraDataSendSet(1);
  269. }
  270. uint8_t RGB_BufCal(uint8_t srcid){
  271. uint8_t ret = 0;
  272. switch(srcid){
  273. case 1:ret = 4;break;
  274. case 2:ret = 11;break;
  275. case 3:ret = 18;break;
  276. case 4:ret = 25;break;
  277. case 5:ret = 32;break;
  278. case 6:ret = 39;break;
  279. case 7:ret = 46;break;
  280. case 8:ret = 53;break;
  281. }
  282. return ret;
  283. }
  284. #else //Uart Flag Data
  285. /*
  286. 현재 Controller 가지고 있는 RGB Sensor ID Check
  287. 현재 비정상적인 동작을 하는 Sensor 에대한 Flag 정보
  288. */
  289. void RGB_Data_Stack(uint8_t* rgb_buf){
  290. memset(&Lora_Buf[0],0x00,8);
  291. /*********************FIX DATA*************************************/
  292. Lora_Buf[bluecell_stx] = 0xbe;
  293. Lora_Buf[bluecell_srcid + 4] = 0xeb;
  294. Lora_Buf[bluecell_type] = RGB_Lora_Data_Report;
  295. Lora_Buf[bluecell_length] = Lora_Max_Amount;// RGB Data 5byte
  296. Lora_Buf[bluecell_srcid] = MyControllerID;
  297. /*********************FIX DATA*************************************/
  298. if(RGB_BufCal(SensorID_buf[1]) == 0){//아무런 Device가 존재 하지않을 때
  299. printf("Not Exist Device \n");
  300. return;
  301. }
  302. for(uint8_t i = 1; i <= (SensorID_Cnt); i++){
  303. Lora_Buf[bluecell_srcid + 1] |= 0x01 << (SensorID_buf[i] - 1);
  304. }
  305. for(uint8_t i = 0; i < 8; i++){
  306. Lora_Buf[bluecell_srcid + 2] |= rgb_buf[i] << i ;
  307. }
  308. Lora_Buf[bluecell_srcid + 3]= STH30_CreateCrc(&Lora_Buf[bluecell_type],Lora_Buf[bluecell_length]);
  309. }
  310. /*
  311. RGB_Data_Stack에 Lora에 Data를 보내기 위해 Buffer에 Data를 쌓을 때
  312. ID 마다 Location Cnt
  313. */
  314. uint8_t RGB_BufCal(uint8_t srcid){
  315. uint8_t ret = 0;
  316. switch(srcid){
  317. case 1:ret = 4;break;
  318. case 2:ret = 7;break;
  319. case 3:ret = 10;break;
  320. case 4:ret = 13;break;
  321. case 5:ret = 16;break;
  322. case 6:ret = 29;break;
  323. case 7:ret = 32;break;
  324. case 8:ret = 35;break;
  325. }
  326. return ret;
  327. }
  328. uint8_t RGB_LimitData_Get(uint8_t id){
  329. switch(id){
  330. }
  331. }
  332. #endif // PYJ.2019.04.14_END --
  333. uint8_t datalosscnt[9] = {0,};
  334. typedef struct{
  335. uint8_t Request_stx;
  336. uint8_t Request_type;
  337. uint8_t Request_length;
  338. uint8_t Request_srcid;
  339. uint8_t Request_dstid;
  340. uint8_t Request_crc;
  341. uint8_t Request_etx;
  342. }LoraDataRequest_t;
  343. void RGB_Controller_Func(uint8_t* data){
  344. RGB_CMD_T type = data[bluecell_type];
  345. LoraDataRequest_t Lora_Tempdata;
  346. // static uint8_t temp_sensorid;
  347. uint8_t Result_buf[100] = {0,};
  348. uint8_t i = 0;
  349. switch(type){
  350. case RGB_Status_Data_Request:
  351. datalosscnt[data[bluecell_srcid + 1]]++;
  352. if(datalosscnt[data[bluecell_srcid + 1]] > 3 && data[bluecell_srcid + 1] != 0){
  353. RGB_SensorIDAutoSet(1);
  354. memset(&SensorID_buf[0],0x00,8);
  355. }
  356. data[5] = STH30_CreateCrc(&data[bluecell_type],data[bluecell_length]);
  357. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],RGB_SensorDataRequest_Length);
  358. break;
  359. case RGB_ControllerID_SET:
  360. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  361. MyControllerID = data[bluecell_srcid]; // �긽��諛⑹쓽 SRC ID�뒗 �굹�쓽 DST ID�씠�떎.
  362. break;
  363. case RGB_SensorID_SET:
  364. RGB_SensorIDAutoSet(1);
  365. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  366. Result_buf[5] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  367. break;
  368. case RGB_SensorID_SET_Success:
  369. SensorID_Cnt++;
  370. SensorID_buf[SensorID_Cnt] = data[bluecell_length + 1];
  371. break;
  372. case RGB_Status_Data_Response:
  373. datalosscnt[data[bluecell_srcid]] = 0;
  374. data[bluecell_length] += 1;
  375. RGB_Alarm_Check(&data[bluecell_stx]);
  376. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  377. Result_buf[Result_buf[bluecell_length] - 1] = RGB_DeviceStatusCheck();// Device On OFF status Send byte
  378. Result_buf[Result_buf[bluecell_length] + 0] = Lora_Buf[bluecell_srcid + 2];
  379. Result_buf[Result_buf[bluecell_length] + 1] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  380. Result_buf[Result_buf[bluecell_length] + 2] = 0xeb;
  381. break;
  382. case RGB_ControllerLimitSet:
  383. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  384. RGB_SensorRedLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_red_H] << 8) |data[bluecell_red_L]);
  385. RGB_SensorGreenLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_green_H] << 8) |data[bluecell_green_L]);
  386. RGB_SensorBlueLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_blue_H] << 8) |data[bluecell_blue_L]);
  387. Result_buf[bluecell_crc] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  388. break;
  389. case RGB_Reset:
  390. NVIC_SystemReset();
  391. break;
  392. case RGB_ID_Allocate_Request:
  393. break;
  394. case RGB_Location_Report:
  395. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  396. break;
  397. case RGB_Location_Response:
  398. Result_buf[bluecell_type] = RGB_Location_Response;
  399. Result_buf[bluecell_srcid] = data[bluecell_srcid];
  400. break;
  401. case RGB_ControllerID_GET:
  402. Result_buf[bluecell_stx] = 0xbe;
  403. Result_buf[bluecell_type] = RGB_ControllerID_GET;
  404. Result_buf[bluecell_length] = 3;
  405. Result_buf[bluecell_srcid] = MyControllerID;
  406. Result_buf[bluecell_srcid + 1] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  407. Result_buf[bluecell_srcid + 2] = 0xeb;
  408. break;
  409. case RGB_ControllerLimitGet:
  410. Result_buf[bluecell_stx] = 0xbe;
  411. Result_buf[bluecell_type] = RGB_ControllerLimitGet;
  412. Result_buf[bluecell_length] = 8;
  413. Result_buf[bluecell_srcid + 0] = (RGB_SensorRedLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  414. Result_buf[bluecell_srcid + 1] = RGB_SensorRedLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  415. Result_buf[bluecell_srcid + 2] = (RGB_SensorGreenLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  416. Result_buf[bluecell_srcid + 3] = RGB_SensorGreenLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  417. Result_buf[bluecell_srcid + 4] = (RGB_SensorBlueLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  418. Result_buf[bluecell_srcid + 5] = RGB_SensorBlueLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  419. Result_buf[bluecell_srcid + 6] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  420. Result_buf[bluecell_srcid + 7] = 0xeb;
  421. break;
  422. case RGB_Lora_DataRequest:
  423. memcpy(&Lora_Tempdata.Request_stx,&data[bluecell_stx],data[bluecell_length] + 3);
  424. if(Lora_Tempdata.Request_dstid == MyControllerID)
  425. LoraDataSendSet(1);
  426. break;
  427. default:
  428. break;
  429. }
  430. RGB_Response_Func(&Result_buf[bluecell_stx]);
  431. return;
  432. }