RGB_Controller.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. #include "RGB_Controller.h"
  2. void RGB_Response_Func(uint8_t* data);
  3. uint8_t RGB_BufCal(uint8_t srcid);
  4. void RGB_Alarm_Operate(void);
  5. void RGB_Data_Stack(uint8_t* rgb_buf);
  6. uint16_t RGB_Location_Address_Check(uint8_t id);
  7. uint8_t SensorID_Cnt = 0;
  8. uint8_t SensorID_buf[8] = {0,};
  9. uint16_t RGB_SensorRedLimit_Buf[9]={0,};
  10. uint16_t RGB_SensorGreenLimit_Buf[9]={0,};
  11. uint16_t RGB_SensorBlueLimit_Buf[9]={0,};
  12. uint8_t LED_Alarm[9] = {0,};
  13. uint8_t RGB_Location_Buf[9][50] = {0};
  14. void RGB_Data_Init(void){
  15. MyControllerID = M24C32_Data_Read(&hi2c2,MY_ID_ADDRESS);
  16. for(uint8_t i = 0; i < 8; i++){
  17. RGB_SensorRedLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_RED_H_ADDRESS + (6 * i)) << 8);
  18. RGB_SensorRedLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_RED_L_ADDRESS + (6 * i));
  19. }
  20. for(uint8_t i = 0; i < 8; i++){
  21. RGB_SensorGreenLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_GREEN_H_ADDRESS + (6 * i)) << 8);
  22. RGB_SensorGreenLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_GREEN_L_ADDRESS + (6 * i));
  23. }
  24. for(uint8_t i = 0; i < 8; i++){
  25. RGB_SensorBlueLimit_Buf[i + 1] = (M24C32_Data_Read(&hi2c2,RGB1_LIMIT_BLUE_H_ADDRESS + (6 * i)) << 8);
  26. RGB_SensorBlueLimit_Buf[i + 1] |= M24C32_Data_Read(&hi2c2,RGB1_LIMIT_BLUE_L_ADDRESS + (6 * i));
  27. }
  28. for(uint8_t i = 0; i < 8; i++){
  29. for(uint8_t aa= 0; aa < 50; aa++)
  30. RGB_Location_Buf[i + 1][aa] = M24C32_Data_Read(&hi2c2,RGB_Location_Address_Check(i + 1) + aa);
  31. }
  32. printf("MY id is %d \n",MyControllerID);
  33. for(uint8_t i = 1; i <= 8; i++){
  34. printf("RGB_SensorRedLimit_Buf[%d] : %04x\n",i,RGB_SensorRedLimit_Buf[i]);
  35. printf("RGB_SensorGreenLimit_Buf[%d] : %04x\n",i,RGB_SensorGreenLimit_Buf[i]);
  36. printf("RGB_SensorBlueLimit_Buf[%d] : %04x\n",i,RGB_SensorBlueLimit_Buf[i]);
  37. }
  38. Default_SX1276.frequency =
  39. Default_SX1276.power =
  40. Default_SX1276.LoRa_Rate =
  41. Default_SX1276.LoRa_BW =
  42. Default_SX1276.LoRa_Lna =
  43. }
  44. uint16_t RGB_Limit_Address_Check(uint8_t id){
  45. uint16_t ret = 0;
  46. switch(id){
  47. case 1: ret = RGB1_LIMIT_RED_H_ADDRESS;break;
  48. case 2: ret = RGB2_LIMIT_RED_H_ADDRESS;break;
  49. case 3: ret = RGB3_LIMIT_RED_H_ADDRESS;break;
  50. case 4: ret = RGB4_LIMIT_RED_H_ADDRESS;break;
  51. case 5: ret = RGB5_LIMIT_RED_H_ADDRESS;break;
  52. case 6: ret = RGB6_LIMIT_RED_H_ADDRESS;break;
  53. case 7: ret = RGB7_LIMIT_RED_H_ADDRESS;break;
  54. case 8: ret = RGB8_LIMIT_RED_H_ADDRESS;break;
  55. }
  56. return ret;
  57. }
  58. uint16_t RGB_Location_Address_Check(uint8_t id){
  59. uint16_t ret = 0;
  60. switch(id){
  61. case 1: ret = RGB1_LOCATION_ADDRESS;break;
  62. case 2: ret = RGB2_LOCATION_ADDRESS;break;
  63. case 3: ret = RGB3_LOCATION_ADDRESS;break;
  64. case 4: ret = RGB4_LOCATION_ADDRESS;break;
  65. case 5: ret = RGB5_LOCATION_ADDRESS;break;
  66. case 6: ret = RGB6_LOCATION_ADDRESS;break;
  67. case 7: ret = RGB7_LOCATION_ADDRESS;break;
  68. case 8: ret = RGB8_LOCATION_ADDRESS;break;
  69. }
  70. return ret;
  71. }
  72. void RGB_Response_Func(uint8_t* data){
  73. RGB_CMD_T type = data[bluecell_type];
  74. uint16_t temp = 0;
  75. LoraDataRequest_t Lora_Tempdata;
  76. #if 0
  77. for(uint8_t i = 0; i < 10; i++){
  78. printf("%02x ",data[i]);
  79. }
  80. #endif
  81. switch(type){
  82. case RGB_Status_Data_Request:
  83. Uart2_Data_Send(data,RGB_SensorDataRequest_Length);
  84. break;
  85. case RGB_ControllerID_SET:
  86. Uart1_Data_Send(data,RGB_ControllerID_SET_Length);
  87. M24C32_Data_Write(&hi2c2,&MyControllerID,MY_ID_ADDRESS,1); // EEPROM Controller ID Save
  88. break;
  89. case RGB_SensorID_SET:
  90. Uart2_Data_Send(data,RGB_SensorIDAutoSetRequest_Length);
  91. break;
  92. case RGB_Status_Data_Response:
  93. Uart1_Data_Send(data,data[bluecell_length] + 3);
  94. break;
  95. case RGB_ControllerLimitSet:
  96. Uart1_Data_Send(data,data[bluecell_length] + 3);
  97. M24C32_Data_Write(&hi2c2,&data[bluecell_red_H],RGB_Limit_Address_Check(data[bluecell_dstid]),6); // EEPROM Controller ID Save
  98. break;
  99. case RGB_Sensor_Start:
  100. case RGB_Sensor_Check:
  101. Uart2_Data_Send(data,RGB_SensorIDAutoSetRequest_Length);
  102. break;
  103. case RGB_Sensor_Ack:
  104. Uart2_Data_Send(data,data[bluecell_length] + 3);
  105. break;
  106. case RGB_Reset:
  107. case RGB_SensorID_SET_Success:
  108. case RGB_ID_Allocate_Request:
  109. case RGB_Lora_ControllerIDAmount_Report:
  110. break;
  111. case RGB_Location_Report:
  112. M24C32_Data_Write(&hi2c2,&data[Location_stx],RGB_Location_Address_Check(data[bluecell_srcid]),data[bluecell_length] + 3); // EEPROM Controller ID Save
  113. break;
  114. case RGB_Location_Response:
  115. data[bluecell_length] = M24C32_Data_Read(&hi2c2,RGB_Location_Address_Check(data[bluecell_dstid]) + 2); // EEPROM Controller ID Save
  116. temp = RGB_Location_Address_Check(data[bluecell_srcid]);
  117. for(uint8_t i = 0; i < (data[bluecell_length] + 3); i++){
  118. data[i] = M24C32_Data_Read(&hi2c2,(temp + i)); // EEPROM Controller ID Save
  119. }
  120. data[bluecell_type] = RGB_Location_Response;
  121. data[data[bluecell_length] + 1] = STH30_CreateCrc(&data[bluecell_type],data[bluecell_length]);
  122. Uart1_Data_Send(data,data[bluecell_length] + 3);
  123. break;
  124. case RGB_ControllerID_GET:
  125. Uart1_Data_Send(data,data[bluecell_length] + 3);
  126. break;
  127. case RGB_ControllerLimitGet:
  128. Uart1_Data_Send(data,data[bluecell_length] + 3);
  129. break;
  130. case RGB_Lora_DataResponse:
  131. memcpy(&Lora_Tempdata.Request_stx,&data[bluecell_stx],data[bluecell_length] + 3);
  132. if(Lora_Tempdata.Request_dstid == MyControllerID)
  133. LoraDataSendSet(1);
  134. else
  135. return;
  136. break;
  137. case RGB_Lora_ConfigSet:
  138. M24C32_Data_Write(&hi2c2,&data[bluecell_srcid],RGB_LORA_FREQ_ADDRESS,data[bluecell_length] - 2); // EEPROM Controller ID Save
  139. break;
  140. case RGB_Lora_ConfigGet:
  141. break;
  142. default:break;
  143. }
  144. }
  145. void RGB_Sensor_LED_Alarm_ON(uint8_t id ){
  146. switch(id){
  147. case 0:// 모든 LED의 전원을 ON
  148. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_RESET);
  149. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_RESET);
  150. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_RESET);
  151. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_RESET);
  152. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_RESET);
  153. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_RESET);
  154. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_RESET);
  155. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_RESET);
  156. break;
  157. case 1:
  158. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_RESET);
  159. break;
  160. case 2:
  161. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_RESET);
  162. break;
  163. case 3:
  164. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_RESET);
  165. break;
  166. case 4:
  167. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_RESET);
  168. break;
  169. case 5:
  170. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_RESET);
  171. break;
  172. case 6:
  173. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_RESET);
  174. break;
  175. case 7:
  176. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_RESET);
  177. break;
  178. case 8:
  179. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_RESET);
  180. break;
  181. }
  182. }
  183. void RGB_Sensor_LED_Alarm_OFF(uint8_t id ){
  184. switch(id){
  185. case 0:// 모든 LED의 전원을 OFF
  186. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_SET);
  187. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_SET);
  188. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_SET);
  189. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_SET);
  190. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_SET);
  191. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_SET);
  192. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_SET);
  193. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_SET);
  194. break;
  195. case 1:
  196. HAL_GPIO_WritePin(LED_CH1_GPIO_Port,LED_CH1_Pin,GPIO_PIN_SET);
  197. break;
  198. case 2:
  199. HAL_GPIO_WritePin(LED_CH2_GPIO_Port,LED_CH2_Pin,GPIO_PIN_SET);
  200. break;
  201. case 3:
  202. HAL_GPIO_WritePin(LED_CH3_GPIO_Port,LED_CH3_Pin,GPIO_PIN_SET);
  203. break;
  204. case 4:
  205. HAL_GPIO_WritePin(LED_CH4_GPIO_Port,LED_CH4_Pin,GPIO_PIN_SET);
  206. break;
  207. case 5:
  208. HAL_GPIO_WritePin(LED_CH5_GPIO_Port,LED_CH5_Pin,GPIO_PIN_SET);
  209. break;
  210. case 6:
  211. HAL_GPIO_WritePin(LED_CH6_GPIO_Port,LED_CH6_Pin,GPIO_PIN_SET);
  212. break;
  213. case 7:
  214. HAL_GPIO_WritePin(LED_CH7_GPIO_Port,LED_CH7_Pin,GPIO_PIN_SET);
  215. break;
  216. case 8:
  217. HAL_GPIO_WritePin(LED_CH8_GPIO_Port,LED_CH8_Pin,GPIO_PIN_SET);
  218. break;
  219. }
  220. }
  221. void RGB_Alarm_Operate(void){
  222. uint8_t temp_warning = 0;
  223. for(uint8_t i = 1; i <= (SensorID_Cnt); i++){
  224. if(LED_Alarm[SensorID_buf[i]] == 1){
  225. HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, GPIO_PIN_SET); //표지 LED
  226. RGB_Sensor_LED_Alarm_ON(SensorID_buf[i]);
  227. temp_warning = 1;
  228. }else{
  229. RGB_Sensor_LED_Alarm_OFF(SensorID_buf[i]);
  230. }
  231. }
  232. if(temp_warning == 0){ // 8개의 Sensor가 전부 정상일 때 만 동작
  233. HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, GPIO_PIN_RESET); //표지 LED
  234. RGB_Sensor_LED_Alarm_OFF(0); //모든 Sensor가 정상일 때는 LED 가 켜지지 않는다.
  235. }
  236. }
  237. void RGB_Alarm_Check(uint8_t* data){
  238. static uint16_t Sensor_red[9] = {0,};
  239. static uint16_t Sensor_green[9] = {0,};
  240. static uint16_t Sensor_blue[9] = {0,};
  241. static uint8_t Prev_Alarm_occur;
  242. uint8_t Alarm_occur = 0;
  243. Sensor_red[data[bluecell_srcid]] = ((data[bluecell_red_H + 2] << 8)| data[bluecell_red_L + 2]);
  244. Sensor_green[data[bluecell_srcid]] = ((data[bluecell_green_H + 2] << 8)| data[bluecell_green_L + 2]);
  245. Sensor_blue[data[bluecell_srcid]] = ((data[bluecell_blue_H + 2] << 8)| data[bluecell_blue_L + 2]);
  246. for(uint8_t i = 1; i <= (SensorID_Cnt); i++){
  247. if(RGB_SensorRedLimit_Buf[SensorID_buf[i]] >= Sensor_red[SensorID_buf[i]]
  248. || RGB_SensorGreenLimit_Buf[SensorID_buf[i]] >= Sensor_green[SensorID_buf[i]]
  249. || RGB_SensorBlueLimit_Buf[SensorID_buf[i]] >= Sensor_blue[SensorID_buf[i]]) {
  250. LED_Alarm[SensorID_buf[i]] = 1;
  251. Alarm_occur = 1;
  252. }else{
  253. LED_Alarm[SensorID_buf[i]] = 0;
  254. }
  255. }
  256. RGB_Data_Stack(&LED_Alarm[1]);
  257. if(Prev_Alarm_occur != Alarm_occur){
  258. // LoraDataSendSet(LoraTx_mode);//경고 발생 시 바로 Data 전송 하는 Option
  259. Prev_Alarm_occur = Alarm_occur;
  260. }
  261. }
  262. uint8_t RGB_DeviceStatusCheck(void){
  263. uint8_t ret = 0;
  264. for(uint8_t i = 1; i <= SensorID_Cnt; i++){
  265. if(SensorID_buf[i] > 0){
  266. ret += 0x01 << (SensorID_buf[i] - 1);
  267. }
  268. }
  269. return ret;
  270. }
  271. uint8_t Lora_Buf[100] = {0,};
  272. #if 0 // PYJ.2019.04.14_BEGIN -- //Uart Value Data
  273. void RGB_Data_Stack(uint8_t* rgb_buf){
  274. uint8_t mynumcnt = RGB_BufCal(rgb_buf[bluecell_srcid]);
  275. Lora_Buf[bluecell_stx] = 0xbe;
  276. Lora_Buf[bluecell_type] = RGB_Lora_Data_Report;
  277. Lora_Buf[bluecell_length] = Lora_Max_Amount + 2; //length 1byte + type 1byte + RGB Data 60byte
  278. Lora_Buf[bluecell_srcid] = MyControllerID;
  279. Lora_Buf[mynumcnt] = rgb_buf[bluecell_srcid];
  280. Lora_Buf[mynumcnt + 1] = rgb_buf[bluecell_red_H + 2];
  281. Lora_Buf[mynumcnt + 2] = rgb_buf[bluecell_red_L + 2];
  282. Lora_Buf[mynumcnt + 3] = rgb_buf[bluecell_green_H + 2];
  283. Lora_Buf[mynumcnt + 4] = rgb_buf[bluecell_green_L + 2];
  284. Lora_Buf[mynumcnt + 5] = rgb_buf[bluecell_blue_H + 2];
  285. Lora_Buf[mynumcnt + 6] = rgb_buf[bluecell_blue_L + 2];
  286. LoraDataSendSet(1);
  287. }
  288. uint8_t RGB_BufCal(uint8_t srcid){
  289. uint8_t ret = 0;
  290. switch(srcid){
  291. case 1:ret = 4;break;
  292. case 2:ret = 11;break;
  293. case 3:ret = 18;break;
  294. case 4:ret = 25;break;
  295. case 5:ret = 32;break;
  296. case 6:ret = 39;break;
  297. case 7:ret = 46;break;
  298. case 8:ret = 53;break;
  299. }
  300. return ret;
  301. }
  302. #else //Uart Flag Data
  303. /*
  304. 현재 Controller 가지고 있는 RGB Sensor ID Check
  305. 현재 비정상적인 동작을 하는 Sensor 에대한 Flag 정보
  306. */
  307. void RGB_Data_Stack(uint8_t* rgb_buf){
  308. memset(&Lora_Buf[0],0x00,8);
  309. /*********************FIX DATA*************************************/
  310. Lora_Buf[bluecell_stx] = 0xbe;
  311. Lora_Buf[bluecell_srcid + 4] = 0xeb;
  312. Lora_Buf[bluecell_type] = RGB_Lora_DataResponse;
  313. Lora_Buf[bluecell_length] = Lora_Max_Amount;// RGB Data 5byte
  314. Lora_Buf[bluecell_srcid] = MyControllerID;
  315. /*********************FIX DATA*************************************/
  316. if(RGB_BufCal(SensorID_buf[1]) == 0){//아무런 Device가 존재 하지않을 때
  317. printf("Not Exist Device \n");
  318. return;
  319. }
  320. for(uint8_t i = 1; i <= (SensorID_Cnt); i++){
  321. Lora_Buf[bluecell_srcid + 1] |= 0x01 << (SensorID_buf[i] - 1);
  322. }
  323. for(uint8_t i = 0; i < 8; i++){
  324. Lora_Buf[bluecell_srcid + 2] |= rgb_buf[i] << i ;
  325. }
  326. Lora_Buf[bluecell_srcid + 3]= STH30_CreateCrc(&Lora_Buf[bluecell_type],Lora_Buf[bluecell_length]);
  327. }
  328. /*
  329. RGB_Data_Stack에 Lora에 Data를 보내기 위해 Buffer에 Data를 쌓을 때
  330. ID 마다 Location Cnt
  331. */
  332. uint8_t RGB_BufCal(uint8_t srcid){
  333. uint8_t ret = 0;
  334. switch(srcid){
  335. case 1:ret = 4;break;
  336. case 2:ret = 7;break;
  337. case 3:ret = 10;break;
  338. case 4:ret = 13;break;
  339. case 5:ret = 16;break;
  340. case 6:ret = 29;break;
  341. case 7:ret = 32;break;
  342. case 8:ret = 35;break;
  343. }
  344. return ret;
  345. }
  346. uint8_t RGB_LimitData_Get(uint8_t id){
  347. switch(id){
  348. }
  349. }
  350. #endif // PYJ.2019.04.14_END --
  351. uint8_t datalosscnt[9] = {0,};
  352. void RGB_Controller_Func(uint8_t* data){
  353. RGB_CMD_T type = data[bluecell_type];
  354. // static uint8_t temp_sensorid;
  355. uint8_t Result_buf[100] = {0,};
  356. uint8_t i = 0;
  357. switch(type){
  358. case RGB_Status_Data_Request:
  359. datalosscnt[data[bluecell_srcid + 1]]++;
  360. if(datalosscnt[data[bluecell_srcid + 1]] > 3 && data[bluecell_srcid + 1] != 0){
  361. RGB_SensorIDAutoSet(1);
  362. memset(&SensorID_buf[0],0x00,8);
  363. }
  364. data[5] = STH30_CreateCrc(&data[bluecell_type],data[bluecell_length]);
  365. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],RGB_SensorDataRequest_Length);
  366. break;
  367. case RGB_ControllerID_SET:
  368. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  369. MyControllerID = data[bluecell_srcid]; // �긽��諛⑹쓽 SRC ID�뒗 �굹�쓽 DST ID�씠�떎.
  370. break;
  371. case RGB_SensorID_SET:
  372. RGB_SensorIDAutoSet(1);
  373. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  374. Result_buf[5] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  375. break;
  376. case RGB_SensorID_SET_Success:
  377. SensorID_Cnt++;
  378. SensorID_buf[SensorID_Cnt] = data[bluecell_length + 1];
  379. break;
  380. case RGB_Status_Data_Response:
  381. datalosscnt[data[bluecell_srcid]] = 0;
  382. data[bluecell_length] += 1;
  383. RGB_Alarm_Check(&data[bluecell_stx]);
  384. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  385. Result_buf[Result_buf[bluecell_length] - 1] = RGB_DeviceStatusCheck();// Device On OFF status Send byte
  386. Result_buf[Result_buf[bluecell_length] + 0] = Lora_Buf[bluecell_srcid + 2];
  387. Result_buf[Result_buf[bluecell_length] + 1] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  388. Result_buf[Result_buf[bluecell_length] + 2] = 0xeb;
  389. break;
  390. case RGB_ControllerLimitSet:
  391. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  392. RGB_SensorRedLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_red_H] << 8) |data[bluecell_red_L]);
  393. RGB_SensorGreenLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_green_H] << 8) |data[bluecell_green_L]);
  394. RGB_SensorBlueLimit_Buf[data[bluecell_dstid]] = ((data[bluecell_blue_H] << 8) |data[bluecell_blue_L]);
  395. Result_buf[bluecell_crc] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  396. break;
  397. case RGB_Reset:
  398. NVIC_SystemReset();
  399. break;
  400. case RGB_ID_Allocate_Request:
  401. break;
  402. case RGB_Location_Report:
  403. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  404. break;
  405. case RGB_Location_Response:
  406. Result_buf[bluecell_type] = RGB_Location_Response;
  407. Result_buf[bluecell_srcid] = data[bluecell_srcid];
  408. break;
  409. case RGB_ControllerID_GET:
  410. Result_buf[bluecell_stx] = 0xbe;
  411. Result_buf[bluecell_type] = RGB_ControllerID_GET;
  412. Result_buf[bluecell_length] = 3;
  413. Result_buf[bluecell_srcid] = MyControllerID;
  414. Result_buf[bluecell_srcid + 1] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  415. Result_buf[bluecell_srcid + 2] = 0xeb;
  416. break;
  417. case RGB_ControllerLimitGet:
  418. Result_buf[bluecell_stx] = 0xbe;
  419. Result_buf[bluecell_type] = RGB_ControllerLimitGet;
  420. Result_buf[bluecell_length] = 8;
  421. Result_buf[bluecell_srcid + 0] = (RGB_SensorRedLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  422. Result_buf[bluecell_srcid + 1] = RGB_SensorRedLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  423. Result_buf[bluecell_srcid + 2] = (RGB_SensorGreenLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  424. Result_buf[bluecell_srcid + 3] = RGB_SensorGreenLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  425. Result_buf[bluecell_srcid + 4] = (RGB_SensorBlueLimit_Buf[data[bluecell_srcid]] & 0xFF00) >> 8;
  426. Result_buf[bluecell_srcid + 5] = RGB_SensorBlueLimit_Buf[data[bluecell_srcid]] & 0x00FF;
  427. Result_buf[bluecell_srcid + 6] = STH30_CreateCrc(&Result_buf[bluecell_type],Result_buf[bluecell_length]);
  428. Result_buf[bluecell_srcid + 7] = 0xeb;
  429. break;
  430. case RGB_Lora_DataRequest:
  431. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  432. Result_buf[bluecell_type] = RGB_Lora_DataResponse;
  433. break;
  434. case RGB_Lora_ConfigSet:
  435. memcpy(&Result_buf[bluecell_stx],&data[bluecell_stx],data[bluecell_length] + 3);
  436. break;
  437. case RGB_Lora_ConfigGet:
  438. break;
  439. default:
  440. break;
  441. }
  442. RGB_Response_Func(&Result_buf[bluecell_stx]);
  443. return;
  444. }