main.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021
  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * @file : main.c
  5. * @brief : Main program body
  6. ******************************************************************************
  7. ** This notice applies to any and all portions of this file
  8. * that are not between comment pairs USER CODE BEGIN and
  9. * USER CODE END. Other portions of this file, whether
  10. * inserted by the user or by software development tools
  11. * are owned by their respective copyright owners.
  12. *
  13. * COPYRIGHT(c) 2019 STMicroelectronics
  14. *
  15. * Redistribution and use in source and binary forms, with or without modification,
  16. * are permitted provided that the following conditions are met:
  17. * 1. Redistributions of source code must retain the above copyright notice,
  18. * this list of conditions and the following disclaimer.
  19. * 2. Redistributions in binary form must reproduce the above copyright notice,
  20. * this list of conditions and the following disclaimer in the documentation
  21. * and/or other materials provided with the distribution.
  22. * 3. Neither the name of STMicroelectronics nor the names of its contributors
  23. * may be used to endorse or promote products derived from this software
  24. * without specific prior written permission.
  25. *
  26. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  27. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,p THE
  28. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  29. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  30. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  31. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  32. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  33. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  34. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  35. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36. *
  37. ******************************************************************************
  38. */
  39. /* USER CODE END Header */
  40. /* Includes ------------------------------------------------------------------*/
  41. #include "main.h"
  42. /* Private includes ----------------------------------------------------------*/
  43. /* USER CODE BEGIN Includes */
  44. /* USER CODE END Includes */
  45. /* Private typedef -----------------------------------------------------------*/
  46. /* USER CODE BEGIN PTD */
  47. /* USER CODE END PTD */
  48. /* Private define ------------------------------------------------------------*/
  49. /* USER CODE BEGIN PD */
  50. /* USER CODE END PD */
  51. /* Private macro -------------------------------------------------------------*/
  52. /* USER CODE BEGIN PM */
  53. /* USER CODE END PM */
  54. /* Private variables ---------------------------------------------------------*/
  55. I2C_HandleTypeDef hi2c2;
  56. TIM_HandleTypeDef htim6;
  57. UART_HandleTypeDef huart1;
  58. UART_HandleTypeDef huart2;
  59. /* USER CODE BEGIN PV */
  60. uint8_t rx1_data[1];
  61. uint8_t rx2_data[1];
  62. uint8_t ring_buf[buf_size];
  63. uint8_t count_in1 = 0;//, count_out = 0;
  64. uint8_t count_in2 = 0;//, count_out = 0;
  65. uint8_t count_in3 = 0, count_out = 0;
  66. uint8_t UartDataisReved;
  67. uint8_t LoraDataSend;
  68. uint8_t RGB_SensorIDAutoset = 0;
  69. volatile uint32_t UartTimerCnt = 0;
  70. volatile uint32_t LedTimerCnt = 0;
  71. uint8_t buf[buf_size] = {0,};
  72. uint8_t MyControllerID = 0;
  73. uint8_t SensorID = 0;
  74. /* USER CODE END PV */
  75. /* Private function prototypes -----------------------------------------------*/
  76. void SystemClock_Config(void);
  77. static void MX_GPIO_Init(void);
  78. static void MX_TIM6_Init(void);
  79. static void MX_USART1_UART_Init(void);
  80. static void MX_USART2_UART_Init(void);
  81. static void MX_I2C2_Init(void);
  82. static void MX_NVIC_Init(void);
  83. /* USER CODE BEGIN PFP */
  84. void RGB_SensorIDAutoSet(uint8_t set);
  85. uint8_t RGB_SensorIDAutoGet(void);
  86. void UartDataRecvSet(uint8_t val);
  87. void Uart_dataCheck(uint8_t* cnt);
  88. void Uart1_Data_Send(uint8_t* data,uint8_t size);
  89. /* USER CODE END PFP */
  90. /* Private user code ---------------------------------------------------------*/
  91. /* USER CODE BEGIN 0 */
  92. void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
  93. {
  94. if(huart->Instance == USART1)//RGB Comunication
  95. {
  96. buf[count_in1] = rx1_data[0];//(uint8_t)USART2->DR;
  97. // printf("data %02x \r\n",rx1_data[0]);
  98. if(buf[count_in1++] == 0xEB){
  99. if(buf[bluecell_length] == (count_in1 - 3))
  100. UartDataRecvSet(1);
  101. else
  102. count_in1 = 0;
  103. }
  104. HAL_UART_Receive_IT(&huart1,&rx1_data[0],1);
  105. }
  106. if(huart->Instance == USART2) // Lora?? ?†µ?‹ ?•˜?Š” ?¬?Џ
  107. {
  108. buf[count_in2] = rx2_data[0];//(uint8_t)USART2->DR;
  109. // if(buf[count_in++] == 0xEB)UartDataRecvSet(1);
  110. if(buf[count_in2++] == 0xEB){
  111. if(buf[bluecell_length] == (count_in2 - 3))
  112. UartDataRecvSet(2);
  113. else
  114. count_in1 = 0;
  115. // printf("UART 2 %d",((count_in2 -1) - 3));
  116. }
  117. HAL_UART_Receive_IT(&huart2,&rx2_data[0],1);
  118. }
  119. #if 0 // PYJ.2019.04.13_BEGIN --
  120. if(huart->Instance == USART3) //GUI ?? ?†µ?‹ ?•˜?Š” Port
  121. {
  122. buf[count_in3] = rx3_data[0];//(uint8_t)USART2->DR;
  123. if(buf[count_in3++] == 0xEB)UartDataRecvSet(3);
  124. /*ring_buf[count_in] = rx2_data[0];//(uint8_t)USART2->DR;
  125. if(++count_in>=buf_size) count_in=0;*/
  126. HAL_UART_Receive_IT(&huart3,&rx3_data[0],1);
  127. }
  128. #endif // PYJ.2019.04.13_END --
  129. }
  130. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
  131. {
  132. if(htim->Instance == TIM6){
  133. UartTimerCnt++;
  134. LedTimerCnt++;
  135. }
  136. }
  137. void LoraDataSendSet(uint8_t val){
  138. LoraDataSend = val;
  139. }
  140. uint8_t LoraDataSendGet(void){
  141. return LoraDataSend;
  142. }
  143. void UartDataRecvSet(uint8_t val){
  144. UartDataisReved = val;
  145. }
  146. uint8_t UartDataRecvGet(void){
  147. return UartDataisReved;
  148. }
  149. void RGB_SensorIDAutoSet(uint8_t set){
  150. RGB_SensorIDAutoset = set;
  151. }
  152. uint8_t RGB_SensorIDAutoGet(void){
  153. return RGB_SensorIDAutoset;
  154. }
  155. void Uart2_Data_Send(uint8_t* data,uint8_t size){
  156. HAL_UART_Transmit(&huart2, data,size, 10);
  157. }
  158. void Uart1_Data_Send(uint8_t* data,uint8_t size){
  159. HAL_UART_Transmit(&huart1, data,size, 10);
  160. }
  161. int _write (int file, uint8_t *ptr, uint16_t len)
  162. {
  163. HAL_UART_Transmit (&huart1, ptr, len, 10);
  164. return len;
  165. }
  166. void Uart_dataCheck(uint8_t* cnt){
  167. etError crccheck = 0;
  168. #if 0
  169. for(uint8_t i = 0; i < (* cnt); i++){
  170. printf("%02x ",buf[i]);
  171. }
  172. printf("\r\n");
  173. #endif
  174. crccheck = STH30_CheckCrc(&buf[bluecell_type],buf[bluecell_length],buf[buf[bluecell_length] + 1]);
  175. if(crccheck == CHECKSUM_ERROR){
  176. for(uint8_t i = 0; i < (*cnt); i++){
  177. printf("%02x ",buf[i]);
  178. }
  179. printf("Original CRC : %02x RecvCRC : %02x \r\n",crccheck,buf[buf[bluecell_length] + 1]);
  180. }
  181. else if(crccheck == NO_ERROR){
  182. RGB_Controller_Func(&buf[bluecell_stx]);
  183. }
  184. else{
  185. printf("What Happen?\r\n");
  186. /*NOP*/
  187. }
  188. *cnt = 0;
  189. memset(buf,0x00,buf_size);
  190. }
  191. void RGB_Sensor_PowerOnOff(uint8_t id){
  192. printf("%d Power ON \r\n",id);
  193. switch(id){
  194. case 0:
  195. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_SET);
  196. HAL_GPIO_WritePin(SENSOR_EN2_GPIO_Port,SENSOR_EN2_Pin,GPIO_PIN_SET);
  197. HAL_GPIO_WritePin(SENSOR_EN3_GPIO_Port,SENSOR_EN3_Pin,GPIO_PIN_SET);
  198. HAL_GPIO_WritePin(SENSOR_EN4_GPIO_Port,SENSOR_EN4_Pin,GPIO_PIN_SET);
  199. HAL_GPIO_WritePin(SENSOR_EN5_GPIO_Port,SENSOR_EN5_Pin,GPIO_PIN_SET);
  200. HAL_GPIO_WritePin(SENSOR_EN6_GPIO_Port,SENSOR_EN6_Pin,GPIO_PIN_SET);
  201. HAL_GPIO_WritePin(SENSOR_EN7_GPIO_Port,SENSOR_EN7_Pin,GPIO_PIN_SET);
  202. HAL_GPIO_WritePin(SENSOR_EN8_GPIO_Port,SENSOR_EN8_Pin,GPIO_PIN_SET);
  203. break;
  204. case 1:
  205. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_RESET);
  206. HAL_Delay(50);
  207. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_SET);
  208. HAL_GPIO_WritePin(SENSOR_EN2_GPIO_Port,SENSOR_EN2_Pin,GPIO_PIN_RESET);
  209. HAL_GPIO_WritePin(SENSOR_EN3_GPIO_Port,SENSOR_EN3_Pin,GPIO_PIN_RESET);
  210. HAL_GPIO_WritePin(SENSOR_EN4_GPIO_Port,SENSOR_EN4_Pin,GPIO_PIN_RESET);
  211. HAL_GPIO_WritePin(SENSOR_EN5_GPIO_Port,SENSOR_EN5_Pin,GPIO_PIN_RESET);
  212. HAL_GPIO_WritePin(SENSOR_EN6_GPIO_Port,SENSOR_EN6_Pin,GPIO_PIN_RESET);
  213. HAL_GPIO_WritePin(SENSOR_EN7_GPIO_Port,SENSOR_EN7_Pin,GPIO_PIN_RESET);
  214. HAL_GPIO_WritePin(SENSOR_EN8_GPIO_Port,SENSOR_EN8_Pin,GPIO_PIN_RESET);
  215. break;
  216. case 2:
  217. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_SET);
  218. HAL_GPIO_WritePin(SENSOR_EN2_GPIO_Port,SENSOR_EN2_Pin,GPIO_PIN_SET);
  219. HAL_GPIO_WritePin(SENSOR_EN3_GPIO_Port,SENSOR_EN3_Pin,GPIO_PIN_RESET);
  220. HAL_GPIO_WritePin(SENSOR_EN4_GPIO_Port,SENSOR_EN4_Pin,GPIO_PIN_RESET);
  221. HAL_GPIO_WritePin(SENSOR_EN5_GPIO_Port,SENSOR_EN5_Pin,GPIO_PIN_RESET);
  222. HAL_GPIO_WritePin(SENSOR_EN6_GPIO_Port,SENSOR_EN6_Pin,GPIO_PIN_RESET);
  223. HAL_GPIO_WritePin(SENSOR_EN7_GPIO_Port,SENSOR_EN7_Pin,GPIO_PIN_RESET);
  224. HAL_GPIO_WritePin(SENSOR_EN8_GPIO_Port,SENSOR_EN8_Pin,GPIO_PIN_RESET);
  225. break;
  226. case 3:
  227. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_SET);
  228. HAL_GPIO_WritePin(SENSOR_EN2_GPIO_Port,SENSOR_EN2_Pin,GPIO_PIN_SET);
  229. HAL_GPIO_WritePin(SENSOR_EN3_GPIO_Port,SENSOR_EN3_Pin,GPIO_PIN_SET);
  230. HAL_GPIO_WritePin(SENSOR_EN4_GPIO_Port,SENSOR_EN4_Pin,GPIO_PIN_RESET);
  231. HAL_GPIO_WritePin(SENSOR_EN5_GPIO_Port,SENSOR_EN5_Pin,GPIO_PIN_RESET);
  232. HAL_GPIO_WritePin(SENSOR_EN6_GPIO_Port,SENSOR_EN6_Pin,GPIO_PIN_RESET);
  233. HAL_GPIO_WritePin(SENSOR_EN7_GPIO_Port,SENSOR_EN7_Pin,GPIO_PIN_RESET);
  234. HAL_GPIO_WritePin(SENSOR_EN8_GPIO_Port,SENSOR_EN8_Pin,GPIO_PIN_RESET);
  235. break;
  236. case 4:
  237. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_SET);
  238. HAL_GPIO_WritePin(SENSOR_EN2_GPIO_Port,SENSOR_EN2_Pin,GPIO_PIN_SET);
  239. HAL_GPIO_WritePin(SENSOR_EN3_GPIO_Port,SENSOR_EN3_Pin,GPIO_PIN_SET);
  240. HAL_GPIO_WritePin(SENSOR_EN4_GPIO_Port,SENSOR_EN4_Pin,GPIO_PIN_SET);
  241. HAL_GPIO_WritePin(SENSOR_EN5_GPIO_Port,SENSOR_EN5_Pin,GPIO_PIN_RESET);
  242. HAL_GPIO_WritePin(SENSOR_EN6_GPIO_Port,SENSOR_EN6_Pin,GPIO_PIN_RESET);
  243. HAL_GPIO_WritePin(SENSOR_EN7_GPIO_Port,SENSOR_EN7_Pin,GPIO_PIN_RESET);
  244. HAL_GPIO_WritePin(SENSOR_EN8_GPIO_Port,SENSOR_EN8_Pin,GPIO_PIN_RESET);
  245. break;
  246. case 5:
  247. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_SET);
  248. HAL_GPIO_WritePin(SENSOR_EN2_GPIO_Port,SENSOR_EN2_Pin,GPIO_PIN_SET);
  249. HAL_GPIO_WritePin(SENSOR_EN3_GPIO_Port,SENSOR_EN3_Pin,GPIO_PIN_SET);
  250. HAL_GPIO_WritePin(SENSOR_EN4_GPIO_Port,SENSOR_EN4_Pin,GPIO_PIN_SET);
  251. HAL_GPIO_WritePin(SENSOR_EN5_GPIO_Port,SENSOR_EN5_Pin,GPIO_PIN_SET);
  252. HAL_GPIO_WritePin(SENSOR_EN6_GPIO_Port,SENSOR_EN6_Pin,GPIO_PIN_RESET);
  253. HAL_GPIO_WritePin(SENSOR_EN7_GPIO_Port,SENSOR_EN7_Pin,GPIO_PIN_RESET);
  254. HAL_GPIO_WritePin(SENSOR_EN8_GPIO_Port,SENSOR_EN8_Pin,GPIO_PIN_RESET);
  255. break;
  256. case 6:
  257. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_SET);
  258. HAL_GPIO_WritePin(SENSOR_EN2_GPIO_Port,SENSOR_EN2_Pin,GPIO_PIN_SET);
  259. HAL_GPIO_WritePin(SENSOR_EN3_GPIO_Port,SENSOR_EN3_Pin,GPIO_PIN_SET);
  260. HAL_GPIO_WritePin(SENSOR_EN4_GPIO_Port,SENSOR_EN4_Pin,GPIO_PIN_SET);
  261. HAL_GPIO_WritePin(SENSOR_EN5_GPIO_Port,SENSOR_EN5_Pin,GPIO_PIN_SET);
  262. HAL_GPIO_WritePin(SENSOR_EN6_GPIO_Port,SENSOR_EN6_Pin,GPIO_PIN_SET);
  263. HAL_GPIO_WritePin(SENSOR_EN7_GPIO_Port,SENSOR_EN7_Pin,GPIO_PIN_RESET);
  264. HAL_GPIO_WritePin(SENSOR_EN8_GPIO_Port,SENSOR_EN8_Pin,GPIO_PIN_RESET);
  265. break;
  266. case 7:
  267. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_SET);
  268. HAL_GPIO_WritePin(SENSOR_EN2_GPIO_Port,SENSOR_EN2_Pin,GPIO_PIN_SET);
  269. HAL_GPIO_WritePin(SENSOR_EN3_GPIO_Port,SENSOR_EN3_Pin,GPIO_PIN_SET);
  270. HAL_GPIO_WritePin(SENSOR_EN4_GPIO_Port,SENSOR_EN4_Pin,GPIO_PIN_SET);
  271. HAL_GPIO_WritePin(SENSOR_EN5_GPIO_Port,SENSOR_EN5_Pin,GPIO_PIN_SET);
  272. HAL_GPIO_WritePin(SENSOR_EN6_GPIO_Port,SENSOR_EN6_Pin,GPIO_PIN_SET);
  273. HAL_GPIO_WritePin(SENSOR_EN7_GPIO_Port,SENSOR_EN7_Pin,GPIO_PIN_SET);
  274. HAL_GPIO_WritePin(SENSOR_EN8_GPIO_Port,SENSOR_EN8_Pin,GPIO_PIN_RESET);
  275. break;
  276. case 8:
  277. HAL_GPIO_WritePin(SENSOR_EN1_GPIO_Port,SENSOR_EN1_Pin,GPIO_PIN_SET);
  278. HAL_GPIO_WritePin(SENSOR_EN2_GPIO_Port,SENSOR_EN2_Pin,GPIO_PIN_SET);
  279. HAL_GPIO_WritePin(SENSOR_EN3_GPIO_Port,SENSOR_EN3_Pin,GPIO_PIN_SET);
  280. HAL_GPIO_WritePin(SENSOR_EN4_GPIO_Port,SENSOR_EN4_Pin,GPIO_PIN_SET);
  281. HAL_GPIO_WritePin(SENSOR_EN5_GPIO_Port,SENSOR_EN5_Pin,GPIO_PIN_SET);
  282. HAL_GPIO_WritePin(SENSOR_EN6_GPIO_Port,SENSOR_EN6_Pin,GPIO_PIN_SET);
  283. HAL_GPIO_WritePin(SENSOR_EN7_GPIO_Port,SENSOR_EN7_Pin,GPIO_PIN_SET);
  284. HAL_GPIO_WritePin(SENSOR_EN8_GPIO_Port,SENSOR_EN8_Pin,GPIO_PIN_SET);
  285. break;
  286. }
  287. }
  288. #define StartAddr ((uint32_t)0x08030000)
  289. #if 1 // PYJ.2019.03.19_BEGIN --
  290. //----------------------------------------------------
  291. #define FLASH_USER StartAddr
  292. #define START_ADDR FLASH_USER
  293. #define END_ADDR FLASH_USER + 262144 // 256K
  294. //----------------------------------------------------
  295. #if 0 // PYJ.2019.03.20_BEGIN --
  296. void test_write() // 쓰기함수
  297. {
  298. __HAL_RCC_TIM7_CLK_DISABLE(); // 매인타이머를 정지합니다
  299. uint32_t Address = 0;
  300. Address = StartAddr;
  301. // printf("================First============ \r\n");
  302. // for(uint8_t i=0;i<16;i++)
  303. // {
  304. // printf("%08x: %X\r\n", Address, *(uint32_t*)Address);
  305. // Address += 4;
  306. // }
  307. // HAL_FLASH_Unlock(); // lock 풀기
  308. // HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, START_ADDR, (uint32_t)0x12345678); //test
  309. // HAL_FLASH_Lock(); // lock 잠그기
  310. // __HAL_RCC_TIM7_CLK_ENABLE(); // 매인타이머를 재시작합니다
  311. Address = StartAddr;
  312. printf("================Second============ \r\n");
  313. //while(Address < 0x0803FFFF)
  314. for(uint16_t i = 0; i<37273 ; i++)
  315. {
  316. printf("%02X", *(uint8_t*)Address);
  317. Address ++;
  318. }
  319. printf("%08x:",Address);
  320. }
  321. #endif // PYJ.2019.03.20_END --
  322. #define DATA_16_1 ((uint32_t)0x1234)
  323. #define DATA_16_2 ((uint32_t)0x5678)
  324. #if 1 // PYJ.2019.03.20_BEGIN --
  325. void test_read(void) // 쓰기함수
  326. {
  327. uint32_t Address = 0x08000000;
  328. uint8_t aa = 0;
  329. for(uint32_t i = Address; i <= Address + 0x35d8; i++ ){
  330. printf("%02X ",*(uint8_t*)i);
  331. aa++;
  332. if(aa > 15){
  333. printf("\n");
  334. aa= 0;
  335. }
  336. }
  337. }
  338. #endif // PYJ.2019.03.20_END --
  339. #define ADDR_FLASH_PAGE_TEST ((uint32_t)0x08030000) /* Base @ of Page 127, 1 Kbytes */
  340. #define FLASH_USER_START_ADDR ADDR_FLASH_PAGE_TEST /* Start @ of user Flash area */
  341. #define FLASH_USER_END_ADDR ADDR_FLASH_PAGE_TEST + ((uint32_t)0x0000FFFF) /* End @ of user Flash area */
  342. void Flash_RGB_Data_Write(uint32_t Addr,uint8_t* data){
  343. uint16_t temp_Red = 0,temp_Green = 0,temp_Blue = 0;
  344. temp_Red = ((data[bluecell_red_H] << 8) |data[bluecell_red_L]); //R
  345. temp_Green= ((data[bluecell_green_H] << 8) |data[bluecell_green_L]); //G
  346. temp_Blue = ((data[bluecell_blue_H] << 8) |data[bluecell_blue_L]); //B
  347. HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD,Addr + 0 , (uint16_t)temp_Red);
  348. HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD,Addr + 2 , (uint16_t)temp_Green);
  349. HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD,Addr + 4 , (uint16_t)temp_Blue);
  350. }
  351. void Flash_write(uint8_t* data) // 쓰기함수
  352. {
  353. /*Variable used for Erase procedure*/
  354. // static FLASH_EraseInitTypeDef EraseInitStruct;
  355. uint32_t Address = 0;//, PAGEError = 0;
  356. /* Fill EraseInit structure*/
  357. // EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
  358. // EraseInitStruct.PageAddress = FLASH_USER_START_ADDR;
  359. // EraseInitStruct.NbPages = (FLASH_USER_END_ADDR - FLASH_USER_START_ADDR) / FLASH_PAGE_SIZE;
  360. Address = START_ADDR;
  361. __HAL_RCC_TIM7_CLK_DISABLE(); // 매인타이머를 정지합니다
  362. HAL_FLASH_Unlock(); // lock 풀기
  363. // if (HAL_FLASHEx_Erase(&EraseInitStruct, &PAGEError) != HAL_OK){
  364. // printf("Erase Failed \r\n");
  365. // }else{
  366. // printf("Erase Success \r\n");
  367. // }
  368. switch(data[bluecell_dstid]){
  369. case 1:
  370. Address += 0;
  371. break;
  372. case 2:
  373. Address += 6;
  374. break;
  375. case 3:
  376. Address += 12;
  377. break;
  378. case 4:
  379. Address += 18;
  380. break;
  381. case 5:
  382. Address += 24;
  383. break;
  384. case 6:
  385. Address += 30;
  386. break;
  387. case 7:
  388. Address += 36;
  389. break;
  390. case 8:
  391. Address += 42;
  392. break;
  393. }
  394. Flash_RGB_Data_Write(Address,&data[bluecell_stx]);
  395. HAL_FLASH_Lock(); // lock 잠그기
  396. __HAL_RCC_TIM7_CLK_ENABLE(); // 매인타이머를 재시작합니다
  397. }
  398. void Flash_InitRead(void) // 쓰기함수
  399. {
  400. uint32_t Address = 0;
  401. Address = StartAddr;
  402. for(uint8_t i = 1; i <= 8; i++ ){
  403. RGB_SensorRedLimit_Buf[i] = (*(uint16_t*)Address);
  404. // printf("%08x : %04X \n",Address ,*(uint16_t*)Address);
  405. Address += 2;
  406. RGB_SensorGreenLimit_Buf[i] = (*(uint16_t*)Address);
  407. // printf("%08x : %04X \n",Address ,*(uint16_t*)Address);
  408. Address += 2;
  409. RGB_SensorBlueLimit_Buf[i] = (*(uint16_t*)Address);
  410. // printf("%08x : %04X \n",Address ,*(uint16_t*)Address);
  411. Address += 2;
  412. }
  413. }
  414. #endif // PYJ.2019.03.19_END --
  415. SX1276_hw_t SX1276_hw;
  416. SX1276_t SX1276;
  417. int master;
  418. int ret;
  419. char buffer[100];
  420. int message_length;
  421. int message;
  422. /* USER CODE END 0 */
  423. /**
  424. * @brief The application entry point.
  425. * @retval int
  426. */
  427. int main(void)
  428. {
  429. /* USER CODE BEGIN 1 */
  430. uint8_t StatusRequest_data[RGB_SensorDataRequest_Length] = {0xbe,RGB_Status_Data_Request,RGB_SensorDataRequest_Length - 3,MyControllerID,SensorID,STH30_CreateCrc(&StatusRequest_data[bluecell_type],StatusRequest_data[bluecell_length]),0xeb};
  431. uint8_t IDAutoSetRequest_data[RGB_SensorIDAutoSetRequest_Length] = {0xbe,RGB_SensorID_SET,RGB_SensorIDAutoSetRequest_Length - 3,MyControllerID,SensorID,STH30_CreateCrc(&IDAutoSetRequest_data[bluecell_type],IDAutoSetRequest_data[bluecell_length]),0xeb};
  432. uint8_t temp_sensorid = 0;
  433. uint8_t uartdatarecv= 0;
  434. /* USER CODE END 1 */
  435. /* MCU Configuration--------------------------------------------------------*/
  436. /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  437. HAL_Init();
  438. /* USER CODE BEGIN Init */
  439. /* USER CODE END Init */
  440. /* Configure the system clock */
  441. SystemClock_Config();
  442. /* USER CODE BEGIN SysInit */
  443. /* USER CODE END SysInit */
  444. /* Initialize all configured peripherals */
  445. MX_GPIO_Init();
  446. MX_TIM6_Init();
  447. MX_USART1_UART_Init();
  448. MX_USART2_UART_Init();
  449. MX_I2C2_Init();
  450. /* Initialize interrupts */
  451. MX_NVIC_Init();
  452. /* USER CODE BEGIN 2 */
  453. HAL_TIM_Base_Start_IT(&htim6);
  454. HAL_UART_Receive_IT(&huart1, &rx1_data[0],1);
  455. HAL_UART_Receive_IT(&huart2, &rx2_data[0],1);
  456. setbuf(stdout, NULL); // \n 을 적을 떄만
  457. #if 1 // PYJ.2019.03.04_BEGIN --
  458. printf("****************************************\r\n");
  459. printf("RGB Project\r\n");
  460. printf("Build at %s %s\r\n", __DATE__, __TIME__);
  461. printf("Copyright (c) 2019. BLUECELL\r\n");
  462. printf("****************************************\r\n");
  463. #endif // PYJ.2019.03.04_END --
  464. RGB_SensorIDAutoSet(1);
  465. Flash_InitRead();
  466. /* USER CODE END 2 */
  467. /* Infinite loop */
  468. /* USER CODE BEGIN WHILE */
  469. //initialize LoRa module
  470. SX1276_hw.dio0.port = SX1276_DIO0_GPIO_Port;
  471. SX1276_hw.dio0.pin = SX1276_DIO0_Pin;
  472. SX1276_hw.nss.port = GPIOA;
  473. SX1276_hw.nss.pin = GPIO_PIN_15;
  474. SX1276_hw.reset.port = SX1276_RESET_GPIO_Port;
  475. SX1276_hw.reset.pin = SX1276_RESET_Pin;
  476. // SX1276_hw.spi = &hspi3;
  477. SX1276.hw = &SX1276_hw;
  478. printf("Configuring LoRa module\r\n");
  479. SX1276_begin(&SX1276, SX1276_917MHZ, SX1276_POWER_17DBM, SX1276_LORA_SF_8,
  480. SX1276_LORA_BW_20_8KHZ, 10);
  481. printf("Done configuring LoRaModule\r\n");
  482. master = 0;
  483. if (master == 1) {
  484. ret = SX1276_LoRaEntryTx(&SX1276, LORA_MAX_DATA_CNT, 2000);
  485. } else {
  486. ret = SX1276_LoRaEntryRx(&SX1276, LORA_MAX_DATA_CNT, 2000);
  487. }
  488. while (1)
  489. {
  490. #if 1 // PYJ.2019.04.11_BEGIN --
  491. RGB_Alarm_Operate();//LED ALARM CHECK
  492. #if 1 // PYJ.2019.04.14_BEGIN --
  493. if(LoraDataSendGet() == 1){
  494. LoraDataSendSet(0);
  495. memcpy(&buffer[0],&Lora_Buf[0],LORA_MAX_DATA_CNT);
  496. message_length = Lora_Max_Amount + 3;////RGB Data 60byte + stx + etx + crc
  497. ret = SX1276_LoRaEntryTx(&SX1276, message_length, 2000);
  498. ret = SX1276_LoRaTxPacket(&SX1276, &buffer[0], message_length, 2000);
  499. // printf("Tx data :");
  500. // for(uint8_t i = 0; i < message_length;i++ )
  501. // printf("%02x ",buffer[i]);
  502. // printf("\n");
  503. }else {
  504. HAL_Delay(1);
  505. ret = SX1276_LoRaRxPacket(&SX1276);
  506. if (ret > 0) {
  507. SX1276_read(&SX1276, &buffer[0], ret);
  508. printf("Received Data : ");
  509. for(uint8_t i = 0; i < ret; i++)
  510. printf("%02x ", buffer[i]);
  511. printf("\n");
  512. }
  513. }
  514. #else
  515. if (master == 1) {
  516. printf("Master ...\r\n");
  517. HAL_Delay(2500);
  518. printf("Sending package...\r\n");
  519. message_length = sprintf(buffer, "Hello %d", message);
  520. ret = SX1276_LoRaEntryTx(&SX1276, message_length, 2000);
  521. printf("Entry: %d\r\n", ret);
  522. printf("Sending %s\r\n", buffer);
  523. ret = SX1276_LoRaTxPacket(&SX1276, (uint8_t *) buffer, message_length,
  524. 2000);
  525. message += 1;
  526. printf("Transmission: %d\r\n", ret);
  527. printf("Package sent...\r\n");
  528. } else {
  529. printf("Slave ...\r\n");
  530. HAL_Delay(1000);
  531. printf("Receiving package...\r\n");
  532. ret = SX1276_LoRaRxPacket(&SX1276);
  533. printf("Received: %d\r\n", ret);
  534. if (ret > 0) {
  535. SX1276_read(&SX1276, (uint8_t *) buffer, ret);
  536. printf("Content (%d): %s\r\n", ret, buffer);
  537. }
  538. printf("Package received ...\r\n");
  539. }
  540. #endif // PYJ.2019.04.14_END --
  541. uartdatarecv = UartDataRecvGet();
  542. if(uartdatarecv != 0){
  543. if(uartdatarecv == 1){
  544. Uart_dataCheck(&count_in1);
  545. }else if(uartdatarecv == 2){
  546. Uart_dataCheck(&count_in2);
  547. }
  548. UartDataRecvSet(0);
  549. }
  550. #else
  551. #if 0 // PYJ.2019.04.13_BEGIN --
  552. if (master == 1) {
  553. message_length = sprintf(buffer, "Hello %d", message);
  554. ret = SX1276_LoRaEntryTx(&SX1276, message_length, 2000);
  555. ret = SX1276_LoRaTxPacket(&SX1276, (uint8_t *) buffer, message_length,
  556. 2000);
  557. message += 1;
  558. printf("Transmission: %d\r\n", ret);
  559. } else {
  560. ret = SX1276_LoRaRxPacket(&SX1276);
  561. printf("Received: %d\r\n", ret);
  562. if (ret > 0) {
  563. SX1276_read(&SX1276, (uint8_t *) buffer, ret);
  564. printf("Content (%d): %s\r\n", ret, buffer);
  565. }
  566. }
  567. #endif // PYJ.2019.04.13_END --
  568. UartDataBufferCheck();
  569. if(UartDataRecvGet() >= 1 && UartTimerCnt > 100){
  570. Uart_dataCheck(USART1_CNT,&count_in1);
  571. }
  572. #endif // PYJ.2019.04.11_END --
  573. else{
  574. if(LedTimerCnt > 500){
  575. if(RGB_SensorIDAutoGet() == 1){
  576. if(SensorID == 0){memset(&SensorID_buf[0],0x00,8);SensorID_Cnt = 0;}
  577. IDAutoSetRequest_data[bluecell_srcid + 1] = ++SensorID;//DST ID
  578. if(IDAutoSetRequest_data[bluecell_srcid + 1] > 8){
  579. RGB_SensorIDAutoSet(0);
  580. RGB_Sensor_PowerOnOff(0);
  581. SensorID = 0;
  582. }else{
  583. RGB_Sensor_PowerOnOff(IDAutoSetRequest_data[4]);
  584. HAL_Delay(500);
  585. RGB_Controller_Func(&IDAutoSetRequest_data[bluecell_stx]);
  586. HAL_Delay(500);
  587. }
  588. }
  589. else{
  590. StatusRequest_data[bluecell_srcid + 1] = SensorID_buf[temp_sensorid++];
  591. if(temp_sensorid > (SensorID_Cnt)){
  592. temp_sensorid = 0;
  593. }
  594. RGB_Controller_Func(&StatusRequest_data[bluecell_stx]);
  595. }
  596. HAL_GPIO_TogglePin(GPIOC,GPIO_PIN_15);
  597. LedTimerCnt = 0;
  598. }
  599. }
  600. /* USER CODE END WHILE */
  601. /* USER CODE BEGIN 3 */
  602. }
  603. /* USER CODE END 3 */
  604. }
  605. /**
  606. * @brief System Clock Configuration
  607. * @retval None
  608. */
  609. void SystemClock_Config(void)
  610. {
  611. RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  612. RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  613. /**Initializes the CPU, AHB and APB busses clocks
  614. */
  615. RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  616. RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  617. RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  618. RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  619. RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  620. RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  621. RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
  622. if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  623. {
  624. Error_Handler();
  625. }
  626. /**Initializes the CPU, AHB and APB busses clocks
  627. */
  628. RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
  629. |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  630. RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  631. RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  632. RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  633. RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  634. if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  635. {
  636. Error_Handler();
  637. }
  638. }
  639. /**
  640. * @brief NVIC Configuration.
  641. * @retval None
  642. */
  643. static void MX_NVIC_Init(void)
  644. {
  645. /* USART2_IRQn interrupt configuration */
  646. HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
  647. HAL_NVIC_EnableIRQ(USART2_IRQn);
  648. /* USART1_IRQn interrupt configuration */
  649. HAL_NVIC_SetPriority(USART1_IRQn, 0, 0);
  650. HAL_NVIC_EnableIRQ(USART1_IRQn);
  651. /* TIM6_IRQn interrupt configuration */
  652. HAL_NVIC_SetPriority(TIM6_IRQn, 0, 0);
  653. HAL_NVIC_EnableIRQ(TIM6_IRQn);
  654. }
  655. /**
  656. * @brief I2C2 Initialization Function
  657. * @param None
  658. * @retval None
  659. */
  660. static void MX_I2C2_Init(void)
  661. {
  662. /* USER CODE BEGIN I2C2_Init 0 */
  663. /* USER CODE END I2C2_Init 0 */
  664. /* USER CODE BEGIN I2C2_Init 1 */
  665. /* USER CODE END I2C2_Init 1 */
  666. hi2c2.Instance = I2C2;
  667. hi2c2.Init.ClockSpeed = 100000;
  668. hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2;
  669. hi2c2.Init.OwnAddress1 = 0;
  670. hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  671. hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  672. hi2c2.Init.OwnAddress2 = 0;
  673. hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  674. hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  675. if (HAL_I2C_Init(&hi2c2) != HAL_OK)
  676. {
  677. Error_Handler();
  678. }
  679. /* USER CODE BEGIN I2C2_Init 2 */
  680. /* USER CODE END I2C2_Init 2 */
  681. }
  682. /**
  683. * @brief TIM6 Initialization Function
  684. * @param None
  685. * @retval None
  686. */
  687. static void MX_TIM6_Init(void)
  688. {
  689. /* USER CODE BEGIN TIM6_Init 0 */
  690. /* USER CODE END TIM6_Init 0 */
  691. TIM_MasterConfigTypeDef sMasterConfig = {0};
  692. /* USER CODE BEGIN TIM6_Init 1 */
  693. /* USER CODE END TIM6_Init 1 */
  694. htim6.Instance = TIM6;
  695. htim6.Init.Prescaler = 1600-1;
  696. htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
  697. htim6.Init.Period = 10-1;
  698. htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  699. if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
  700. {
  701. Error_Handler();
  702. }
  703. sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  704. sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  705. if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
  706. {
  707. Error_Handler();
  708. }
  709. /* USER CODE BEGIN TIM6_Init 2 */
  710. /* USER CODE END TIM6_Init 2 */
  711. }
  712. /**
  713. * @brief USART1 Initialization Function
  714. * @param None
  715. * @retval None
  716. */
  717. static void MX_USART1_UART_Init(void)
  718. {
  719. /* USER CODE BEGIN USART1_Init 0 */
  720. /* USER CODE END USART1_Init 0 */
  721. /* USER CODE BEGIN USART1_Init 1 */
  722. /* USER CODE END USART1_Init 1 */
  723. huart1.Instance = USART1;
  724. huart1.Init.BaudRate = 115200;
  725. huart1.Init.WordLength = UART_WORDLENGTH_8B;
  726. huart1.Init.StopBits = UART_STOPBITS_1;
  727. huart1.Init.Parity = UART_PARITY_NONE;
  728. huart1.Init.Mode = UART_MODE_TX_RX;
  729. huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  730. huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  731. if (HAL_UART_Init(&huart1) != HAL_OK)
  732. {
  733. Error_Handler();
  734. }
  735. /* USER CODE BEGIN USART1_Init 2 */
  736. /* USER CODE END USART1_Init 2 */
  737. }
  738. /**
  739. * @brief USART2 Initialization Function
  740. * @param None
  741. * @retval None
  742. */
  743. static void MX_USART2_UART_Init(void)
  744. {
  745. /* USER CODE BEGIN USART2_Init 0 */
  746. /* USER CODE END USART2_Init 0 */
  747. /* USER CODE BEGIN USART2_Init 1 */
  748. /* USER CODE END USART2_Init 1 */
  749. huart2.Instance = USART2;
  750. huart2.Init.BaudRate = 115200;
  751. huart2.Init.WordLength = UART_WORDLENGTH_8B;
  752. huart2.Init.StopBits = UART_STOPBITS_1;
  753. huart2.Init.Parity = UART_PARITY_NONE;
  754. huart2.Init.Mode = UART_MODE_TX_RX;
  755. huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  756. huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  757. if (HAL_UART_Init(&huart2) != HAL_OK)
  758. {
  759. Error_Handler();
  760. }
  761. /* USER CODE BEGIN USART2_Init 2 */
  762. /* USER CODE END USART2_Init 2 */
  763. }
  764. /**
  765. * @brief GPIO Initialization Function
  766. * @param None
  767. * @retval None
  768. */
  769. static void MX_GPIO_Init(void)
  770. {
  771. GPIO_InitTypeDef GPIO_InitStruct = {0};
  772. /* GPIO Ports Clock Enable */
  773. __HAL_RCC_GPIOC_CLK_ENABLE();
  774. __HAL_RCC_GPIOD_CLK_ENABLE();
  775. __HAL_RCC_GPIOA_CLK_ENABLE();
  776. __HAL_RCC_GPIOB_CLK_ENABLE();
  777. /*Configure GPIO pin Output Level */
  778. HAL_GPIO_WritePin(GPIOC, BOOT_LED_Pin|SX1276_DIO4_Pin|SX1276_DIO5_Pin|SENSOR_EN4_Pin
  779. |SENSOR_EN5_Pin|SENSOR_EN6_Pin|SENSOR_EN7_Pin|LED_CH1_Pin
  780. |LED_CH2_Pin|LED_CH3_Pin, GPIO_PIN_RESET);
  781. /*Configure GPIO pin Output Level */
  782. HAL_GPIO_WritePin(GPIOA, SX1276_DIO0_Pin|SX1276_DIO1_Pin|SX1276_DIO2_Pin|SX1276_DIO3_Pin
  783. |SENSOR_EN8_Pin|SX1276_NSS_Pin, GPIO_PIN_RESET);
  784. /*Configure GPIO pin Output Level */
  785. HAL_GPIO_WritePin(GPIOB, SX1276_RESET_Pin|LED_ALARM_Pin|SENSOR_EN1_Pin|SENSOR_EN2_Pin
  786. |SENSOR_EN3_Pin|SX1276_CLK_Pin|SX1276_MOSI_Pin|LED_CH5_Pin
  787. |LED_CH6_Pin|LED_CH7_Pin|LED_CH8_Pin, GPIO_PIN_RESET);
  788. /*Configure GPIO pin Output Level */
  789. HAL_GPIO_WritePin(LED_CH4_GPIO_Port, LED_CH4_Pin, GPIO_PIN_RESET);
  790. /*Configure GPIO pins : BOOT_LED_Pin SX1276_DIO4_Pin SX1276_DIO5_Pin SENSOR_EN4_Pin
  791. SENSOR_EN5_Pin SENSOR_EN6_Pin SENSOR_EN7_Pin LED_CH1_Pin
  792. LED_CH2_Pin LED_CH3_Pin */
  793. GPIO_InitStruct.Pin = BOOT_LED_Pin|SX1276_DIO4_Pin|SX1276_DIO5_Pin|SENSOR_EN4_Pin
  794. |SENSOR_EN5_Pin|SENSOR_EN6_Pin|SENSOR_EN7_Pin|LED_CH1_Pin
  795. |LED_CH2_Pin|LED_CH3_Pin;
  796. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  797. GPIO_InitStruct.Pull = GPIO_NOPULL;
  798. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  799. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  800. /*Configure GPIO pins : SX1276_DIO0_Pin SX1276_DIO1_Pin SX1276_DIO2_Pin SX1276_DIO3_Pin
  801. SENSOR_EN8_Pin SX1276_NSS_Pin */
  802. GPIO_InitStruct.Pin = SX1276_DIO0_Pin|SX1276_DIO1_Pin|SX1276_DIO2_Pin|SX1276_DIO3_Pin
  803. |SENSOR_EN8_Pin|SX1276_NSS_Pin;
  804. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  805. GPIO_InitStruct.Pull = GPIO_NOPULL;
  806. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  807. HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  808. /*Configure GPIO pins : SX1276_RESET_Pin LED_ALARM_Pin SENSOR_EN1_Pin SENSOR_EN2_Pin
  809. SENSOR_EN3_Pin SX1276_CLK_Pin SX1276_MOSI_Pin LED_CH5_Pin
  810. LED_CH6_Pin LED_CH7_Pin LED_CH8_Pin */
  811. GPIO_InitStruct.Pin = SX1276_RESET_Pin|LED_ALARM_Pin|SENSOR_EN1_Pin|SENSOR_EN2_Pin
  812. |SENSOR_EN3_Pin|SX1276_CLK_Pin|SX1276_MOSI_Pin|LED_CH5_Pin
  813. |LED_CH6_Pin|LED_CH7_Pin|LED_CH8_Pin;
  814. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  815. GPIO_InitStruct.Pull = GPIO_NOPULL;
  816. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  817. HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  818. /*Configure GPIO pin : LED_CH4_Pin */
  819. GPIO_InitStruct.Pin = LED_CH4_Pin;
  820. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  821. GPIO_InitStruct.Pull = GPIO_NOPULL;
  822. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  823. HAL_GPIO_Init(LED_CH4_GPIO_Port, &GPIO_InitStruct);
  824. /*Configure GPIO pin : SX1276_MISO_Pin */
  825. GPIO_InitStruct.Pin = SX1276_MISO_Pin;
  826. GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  827. GPIO_InitStruct.Pull = GPIO_NOPULL;
  828. HAL_GPIO_Init(SX1276_MISO_GPIO_Port, &GPIO_InitStruct);
  829. }
  830. /* USER CODE BEGIN 4 */
  831. /* USER CODE END 4 */
  832. /**
  833. * @brief This function is executed in case of error occurrence.
  834. * @retval None
  835. */
  836. void Error_Handler(void)
  837. {
  838. /* USER CODE BEGIN Error_Handler_Debug */
  839. /* User can add his own implementation to report the HAL error return state */
  840. /* USER CODE END Error_Handler_Debug */
  841. }
  842. #ifdef USE_FULL_ASSERT
  843. /**
  844. * @brief Reports the name of the source file and the source line number
  845. * where the assert_param error has occurred.
  846. * @param file: pointer to the source file name
  847. * @param line: assert_param error line source number
  848. * @retval None
  849. */
  850. void assert_failed(uint8_t *file, uint32_t line)
  851. {
  852. /* USER CODE BEGIN 6 */
  853. /* User can add his own implementation to report the file name and line number,
  854. tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  855. /* USER CODE END 6 */
  856. }
  857. #endif /* USE_FULL_ASSERT */
  858. /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/