

BDA4601

1MHz-4GHz

Device Features

Figure 1. Functional Block Diagram

- QFN 4x4mm 20 pin package
- Serial & 6 bit Parallel Interface
- 31.5 dB Control Range 0.5 dB step
- No positive glitch
- 2.7 V to 5.5 V supply
- 1.8 V or 3.3 V control logic
- Any bit Attenuation Error < ±0.6 dB up to 3GHz
- Low Insertion Loss
 - 0.8dB @ 1MHz 0.9 dB @ 1GHz 1.3 dB @ 2GHz 1.6 dB @ 3GHz
- High linearity IIP3 > +52 dBm
- Input 0.1dB Compression (P0.1dB) 34dBm
- Programming modes
- Direct parallel
- Latched parallel
- Serial
- Support function power up state selection with PUP1,2 pin
- Stable Integral Non-Linearity over temperature
- Low Current Consumption 150 µA typical
- -40 °C to +105 °C operating temperature
- ESD rating : Class2 (2KV HBM)

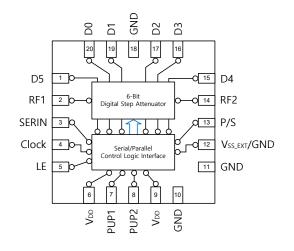


Figure 2. Package Type

Product Description

The BDA4601 is a 50 Ω digital step attenuator model which provides adjustable attenuation from 0 to 31.5 dB in 0.5 dB steps. The control is a 6-bit serial interface and parallel interface.

Covering 1MHz to 4.0 GHz, the insertion loss is less than 1.5 dB typical. And Offering the High linearity, low power consumption, and low insertion loss.

The device features safe state transitions with No positive Glitch technology. and is optimized for excellent step accuracy

The RF input and output are internally matched to 50 Ω and do not require any external matching components. The design is bidirectional; therefore, the RF input and output are interchangeable.

BDA4601 also features an external negative supply option.

This DSA does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor.

20-lead 4x4 mm QFN

Application

- Cellular Base station/Repeater Infrastructure
- **Digital Pre-Distortion**
- Point to Point
- Test Equipment and sensors
- Military Wireless system
- Cable Infrastructure
- General purpose Wireless

•website: www.berex.com

•email: sales@berex.com

Specifications and information are subject to change and products may be discontinued without notice. BeRex is a trademark of BeRex.

Preliminary Datasheet

BDA4601

1MHz-4GHz

Table 1. Electrical Specifications¹

Para	neter	C	ondition	Frequency	Min	Тур	Max	Unit
Operational Fr	equency Range				1		4000	MHz
				1MHz - 1GHz		0.8	4000 .8 0.9 .1 1.3 .3 1.6 .3 2.8 31.5	dB
Incorti	$n \log^2$	Atton	uation - OdP	> 1 - 2GHz		1.1	1.3	dB
insertio	Insertion Loss ² Attenuation = 0dB		> 2 - 3GHz		1.3	1.6	dB	
				2.8	2.8 dB			
	Range	0.	.5dB step			0 - 31.5		dB
				1MHz - 1GHz	±(0.15 +	1% of attenuat	ion state)	
Attenuation	Accuracy	Apy hit o	bit combination	> 1 - 2.2GHz	±(0.15 +	2% of attenuat	ion state)	dB
	Accuracy	ncy Range 1 4000 ss ² Attenuation = 0dB 11/2 GHz 0.8 0.9 ss ² Attenuation = 0dB >1 - 2GHz 1.1 1.3 sample 0.5dB step 1 2.3 2.8 Range 0.5dB step 0 - 31.5 1 1 1 ccuracy Any bit or bit combination $\pm (0.15 + 1\%$ of attenuation state) >1 - 2.2GHz $\pm (0.15 + 2\%$ of attenuation state) >1 - 2.2GHz $\pm (0.15 + 5\%$ of attenuation state) >2.2 - 3GHz $\pm (0.15 + 5\%$ of attenuation state) >3 - 4GHz $\pm (0.15 + 5\%$ of attenuation state) >3 - 4GHz $\pm (0.15 + 5\%$ of attenuation state) >3 - 4GHz $\pm (0.15 + 5\%$ of attenuation state) >3 - 4GHz $\pm (0.15 + 5\%$ of attenuation state) >2.2 - 3GHz $\pm (0.15 + 5\%$ of attenuation state) >3 - 4GHz 16 1	ub					
				> 3 - 4GHz	±(0.15 +	8% of attenuat	4000 0.9 1.3 1.6 2.8 ion state) ion	
	Input Return			1 - 2GHz		24		
Return loss	Loss	Atton	uation - OdP	> 2 - 4GHz		16		dB
	Output Return	Atten		1 - 2GHz		22		
	Loss			> 2 - 4GHz		15	4000 0.9 1.3 1.6 2.8 ion state) ion	
				1GHz		11		degree
Dolotiv	e Phase	Attenuetien Odb		2GHz		26		
Relativ	e Phase	Atten	uation = 00B	3GHz		30		degree
				4GHz		15 11 26 30 48		
	Input 0.1dB Compression point	Atten	uation = 0dB	2140MHz		34		dBm
			Attn=0.0dB RFin =RF1			52		
Input Linearity	1	Pin= +5dBm/tone	Attn=0.0dB RFin =RF2	1050141		56		d D u
	Input IP3	△f = 10KHz	Attn=15.5dB RFin =RF1	1950IVIHZ		57		dBm
			Attn=15.5dB RFin =RF2			52		
Switch	ing time	50% CTRL	to 90% or 10% RF			500	800	ns
		No	rmal Mode			150	180	μA
Supply	Current	Вур	bass Mode			50	80	μA
		Negative	supply Current		-40	-16		μA

1. Device performance _ measured on a BeRex Evaluation board Kit at 25°C, 50 Ω system, VDD=+3.3V

2. All data has PCB insertion loss de-embedded

2

BDA4601

1MHz-4GHz

Table 2. Recommended operating Condition

	Paramete	er	Symbol	Condition	Min	Тур	Max	Unit
	Normal Mode ¹	Supply Voltage	V_{DD}		2.7		5.5	v
Supply Voltages	Durana Mada ²	Supply Voltage	V_{DD}		2.7		5.5	V
	Bypass Mode ² Negative supply Volta		V_{SS_EXT}		-2.7	-2.5	-2.4	V
	Normal Mode or	Input Voltage	V _{CTL}	P/S, CLK, SERIN, LE, DO-D5, PUP1,PUP2				
Digital Control Input		High	V _{CTLH}	V _{DD} =3.3V/5V	1.17		3.6	V
	Bypass Mode	Low	V _{CTLL}	V _{DD} =3.3V/5V	0		0.6	V
Ор	erating Tempera	ture Range	T _{case}	Exposed Paddle	-40		105	°C
RF CW Input Power		P _{IN_CW}	RF1 or RF2			24	dBm	
Impedance		Z_{Load}	Single ended		50		Ω	

¹Normal mode : connect pin 12 to GND to enable internal negative voltage generator

² Bypass mode : Do not want to use negative voltage generator, supply a negative voltage to Vss_EXT(Pin12) for bypass and disable internal negative voltage generator.

Table 3. Absolute Maximum Ratings

Parameter		Symbol	Min	Тур	Max	Unit
Supply Voltage		V _{DD}	-0.3		5.5	V
Digital input voltage		V _{CTL}	-0.3		3.6	V
Maximum input power		P _{IN_CWMAX}			34	dBm
	Juction	TJ			140	°C
Temperature	Storage	T _{ST}	-65		150	°C
	Reflow	T _R			260	°C
	HBM ¹	ESD _{HBM}			2000 (Class 2)	V
ESD Sensitivity	CDM ²	ESD _{CDM}			500 (Class C2)	V

Operation of this device above any of these parameters may result in permanent damage.

¹HBM : Human Body Model (JEDEC **JESD22-A114**)

² CDM : Charged Device Model (JEDEC JESD22-C101)

BDA4601

1MHz-4GHz

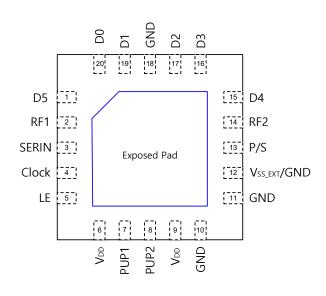


Figure 3. Pin Configuration(Top View)

* Device is RF Bi -Directional

Table 4. Pin Description

Pin	Pin name	Description
1	D5	Parallel Control Voltage Inputs, Attenuation control bit 16dB
2	$RF1^1$	RF1 port (Attenuator RF Input) This pin can also be used as an output because the design is bidirectional. RF1 is dc-coupled and matched to 50 Ω
3	SERIN	Serial interface data input
4	CLK	Serial interface clock input
5	LE	Latch Enable input
6	V _{DD}	Power Supply (nominal 3.3V)
7	PUP1	Power-Up State Selection Bits. These pins set the attenuation value at power-up (see Table 11). There is no internal pull-up or pull-
8	PUP2	down resistor on these pins; therefore, they must always be kept at a valid logic level (V_{CTLH} or V_{CTLL}) and not be left floating
9	V _{dd}	Supply voltage (nominal 3.3V)
12	V _{SS_EXT} ² /GND	External V _{SS} negative voltage control or ground Do not want to use negative voltage supply, These pins must be connected to ground (GND, Default setting is GND)
13	P/S	Parallel/Serial Mode Select. For parallel mode operation, set this pin to low. For serial mode operation, set this pin to High.
14	RF2 ¹	RF2 port (Attenuator RF Output.) This pin can also be used as an input because the design is bidirectional. RF2 is dc-coupled and matched to 50 $Ω$.
15	D4	Parallel Control Voltage Inputs, Attenuation control bit 8dB
16	D3	Parallel Control Voltage Inputs, Attenuation control bit 4dB
17	D2	Parallel Control Voltage Inputs, Attenuation control bit 2dB
19	D1	Parallel Control Voltage Inputs, Attenuation control bit 1dB
20	D0	Parallel Control Voltage Inputs, Attenuation control bit 0.5dB
Pad	GND	Exposed pad: The exposed pad must be connected to ground for proper operation
10,11,18	GND	Ground, These pins must be connected to ground

Connect VssEXT (pin 12, VssEXT = GND) to enable internal negative voltage generator

•website: <u>www.berex.com</u>

•email: sales@berex.com

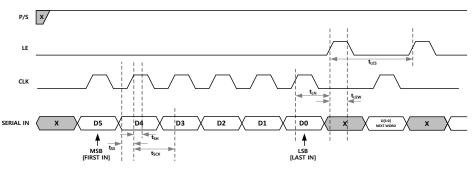
4

1MHz-4GHz

Programming Options

BDA4601 can be programmed using either the parallel or serial interface, which is selectable via P/S pin(Pin13).

Serial mode is selected by floating P/S or pulling it to a voltage logic LOW and parallel mode is selected by setting P/S to logic low


Serial Control Mode

The serial interface is a 6 bit shift register to shift in the data MSB (D5) first. When serial programming is used, all the parallel control input pins (1, 15, 16, 17, 19, 20) **must** be grounded. It is controlled by three CMOS-compatible signals: SERIN, Clock, and Latch Enable (LE).

Figure 4. Serial Mode Resister Timing Diagram

Table 5. 6-Bit Serial Word Sequence

D5	Attenuation 16dB Control Bit
D4	Attenuation 8dB Control Bit
D3	Attenuation 4dB Control Bit
D2	Attenuation 2dB Control Bit
D1	Attenuation 1dB Control Bit
D0	Attenuation 0.5dB Control Bit

The BDA4601 has a 3-wire serial peripheral interface (SPI): serial data input (Data), clock (CLK), and latch enable (LE). The serial control interface is activated when P/S is set to HIGH.

In serial mode, the 6-bit Data is clocked MSB first on the rising CLK edges into the shift register and then LE must be toggled High to latch the new attenuation state into the device. LE must be set to low to clock new 6-bit data into the shift register because CLK is masked to prevent the attenuator value from changing if LE is kept High (see Figure 4 and Table 8).

Table 6. Mode Selection

P/S	Control Mode
LOW	Parallel
HIGH	Serial

Table 7. Serial Interface Timing Specifications

Symbol	Parameter	Min	Тур	Max	Unit
fClk	Serial data clock frequency			10	MHz
t _{sck}	Minimum serial period	70			
t _{ss}	Serial Data setup time	10			
t _{sH}	Serial Data hold time	10			
t _{LN}	LE setup time	10			
t_{LEW}	Minimum LE pulse width	30			
t_{LES}	Minimum LE pulse spacing		600		

Table 8. Truth Table for Serial Control Word

	D					
D5	D4	D3	D2	D1	D0	Attenuation
(MSB)					(LSB)	(dB)
LOW	LOW	LOW	LOW	LOW	LOW	0 (Reference)
LOW	LOW	LOW	LOW	LOW	HIGH	0.5
LOW	LOW	LOW	LOW	HIGH	LOW	1
LOW	LOW	LOW	HIGH	LOW	LOW	2
LOW	LOW	HIGH	LOW	LOW	LOW	4
LOW	HIGH	LOW	LOW	LOW	LOW	8
HIGH	LOW	LOW	LOW	LOW	LOW	16
HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	31.5

BeRex

•website: www.berex.com

•email: sales@berex.com

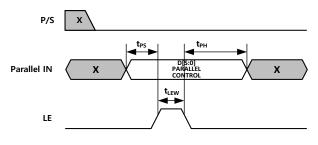
5

BDA4601

1MHz-4GHz

Parallel Control Mode

The BDA4601 has six digital control inputs, D0 (LSB) to D5 (MSB), to select the desired attenuation state in parallel mode, as shown in Table 9. The parallel control interface is activated when P/S is set to low. There are two modes of parallel operation: direct parallel and latched parallel


Direct Parallel Mode

The LE pin must be kept LOW. The attenuation state is changed by the control voltage inputs (D0 to D5) directly. This mode is ideal for manual control of the attenuator. In this mode the device will immediately react to any voltage changes to the parallel control pins [pins 1, 15, 16, 17,19, 20]. Use direct parallel mode for the fastest settling time.

Latched Parallel Mode

The LE pin must be kept low when changing the control voltage inputs (D0 to D5) to set the attenuation state. When the desired state is set, LE must be toggled LOW to transfer the 6-bit data to the bypass switches of the attenuator array, and then toggled low to latch the change into the device until the next desired attenuation change (see Figure 5 and Table 9).

Figure 5. Latched Parallel Mode Timing Diagram

Table 9. Truth Table for the Parallel Control Word

D0	D1	D2	D3	D4	D5	P/S	LE	Attenuation State
LOW	LOW	LOW	LOW	LOW	LOW	LOW	HIGH	Reference Loss
HIGH	LOW	LOW	LOW	LOW	LOW	LOW	HIGH	0.5dB
LOW	HIGH	LOW	LOW	LOW	LOW	LOW	HIGH	1dB
LOW	LOW	HIGH	LOW	LOW	LOW	LOW	HIGH	2dB
LOW	LOW	LOW	HIGH	LOW	LOW	LOW	HIGH	4dB
LOW	LOW	LOW	LOW	HIGH	LOW	LOW	HIGH	8dB
LOW	LOW	LOW	LOW	LOW	HIGH	LOW	HIGH	16dB
HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	LOW	HIGH	31.5dB

Table 10. Parallel Interface Timing Specifications

Symbol	Parameter	Min	Тур	Max	Unit
t_{LEW}	Minimum LE pulse width	10			ns
t _{PH}	Data hold time from LE	10			ns
t _{PS}	Data setup time to LE	10			ns

Power-UP Interface

The BDA4601 uses the PUP1 and PUP2 control voltage inputs to set the attenuation value to a known value at power-up before the initial control data word is provided in parallel mode.

Power-up Control for Parallel Mode (P/S=LOW)

When the attenuator powers up with LE set to low, the state of PUP1 and PUP2 determines the power-up state of the device per the truth table shown in Table 11.

Power-up Control for Serial Mode (P/S=HIGH)

When the attenuator powers up in Serial mode, the six digital control inputs are set to whatever data is present on the six parallel data inputs (D0 to D5, Refer to Table 12). This allows any one of the 64 attenuation settings to be specified as the power-up state.

Table 11. PUP Truth Table for Parallel Control Mode

Attenuation state	P/S	LE	PUP1	PUP2
31.5 dB	LOW	LOW	HIGH	HIGH
16 dB	LOW	LOW	HIGH	LOW
8 dB	LOW	LOW	LOW	HIGH
Reference Loss	LOW	LOW	LOW	LOW
Defined by C0.5-C16	LOW	HIGH	Don't Care	Don't Care

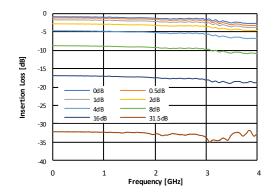
Table 12. PUP Truth Table for Serial Control Mode

Attenuation State	P/S	D0	D1	D2	D3	D4	D5
Reference Loss	HIGH	LOW	LOW	LOW	LOW	LOW	LOW
0.5dB	HIGH	HIGH	LOW	LOW	LOW	LOW	LOW
1dB	HIGH	LOW	HIGH	LOW	LOW	LOW	LOW
2dB	HIGH	LOW	LOW	HIGH	LOW	LOW	LOW
4dB	HIGH	LOW	LOW	LOW	HIGH	LOW	LOW
8dB	HIGH	LOW	LOW	LOW	LOW	HIGH	LOW
16dB	HIGH	LOW	LOW	LOW	LOW	LOW	HIGH
20dB	HIGH	LOW	LOW	LOW	HIGH	LOW	HIGH
24dB	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH
31.5dB	HIGH						

•website: <u>www.berex.com</u>

•email: sales@berex.com

BeRex



BDA4601

1MHz-4GHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25° and V_{DD} = 3.3V, All data has PCB insertion loss de-embedded, unless otherwise noted

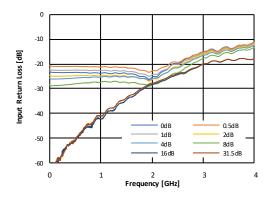


Figure 8. Input Return Loss vs. Frequency over Major Attenuation States

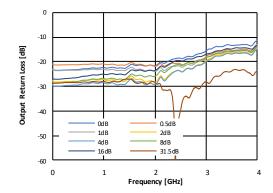


Figure 10. Output Return Loss vs. Frequency over Major Attenuation States

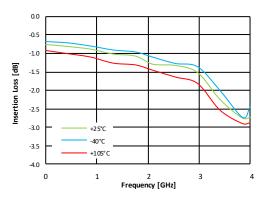


Figure 7 Insertion Loss vs. Frequency over Temperature

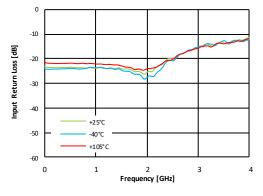
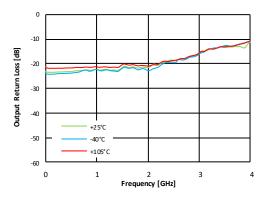
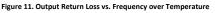




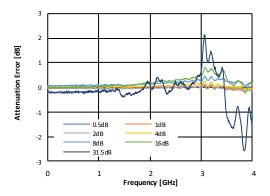
Figure 9. Input Return Loss vs. Frequency over Temperature

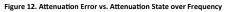
BeRex

•website: www.berex.com

•email: <u>sales@berex.com</u>

7




BDA4601

1MHz– 4GHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25° and V_{DD} = 3.3V, All data has PCB insertion loss de-embedded, unless otherwise noted

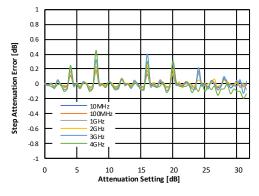


Figure 14. Step Error vs Attenuation State over Frequency

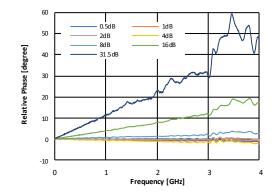


Figure 16. Relative Phase vs. Attenuation State over Frequency

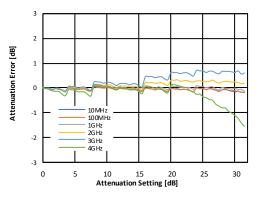


Figure 13. Attenuation Error vs. Major Frequency over Attenuation States

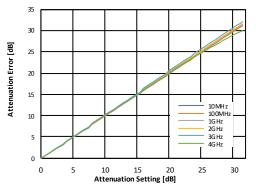


Figure 15. Actual Attenuation vs Ideal Attenuation over Frequency

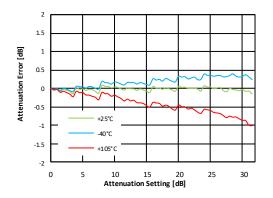
Figure 17. Attenuation Error at 100Mhz vs Temperature over Attenuation State

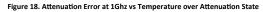
BeRex

•website: www.berex.com

•email: sales@berex.com

8




BDA4601

1MHz-4GHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25° and V_{DD} = 3.3V, All data has PCB insertion loss de-embedded, unless otherwise noted

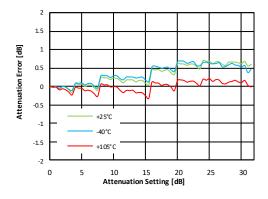


Figure 20. Attenuation Error at 3Ghz vs Temperature over Attenuation State

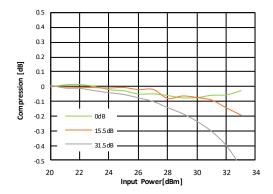


Figure 22. Compression³ at 2.14GHz vs. Input Power over Major Attenuation state

•website: www.berex.com

Note: 1. Minimum Attenuation state means that the attenuation setting is 0dB. 2. Maximum Attenuation state means that the attenuation setting is 31.5dB 3. Input 0.1dB Compression

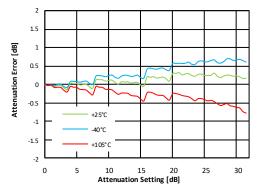


Figure 19. Attenuation Error at 2Ghz vs Temperature over Attenuation State

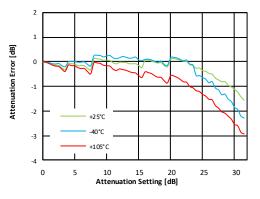


Figure 21. Attenuation Error at 4Ghz vs Temperature over Attenuation State

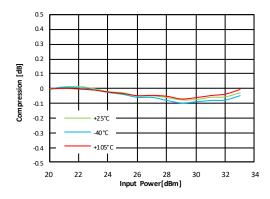


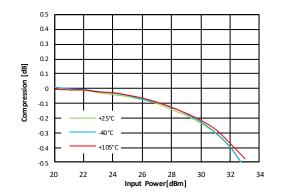
Figure 23. Compression at 2.14GHz and Minimum Attenuation State¹ vs. Input Power over Temperature

•email: sales@berex.com

9

Specifications and information are subject to change and products may be discontinued without notice. BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2018 BeRex

BeRex



BDA4601

1MHz-4GHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25° and V_{DD} = 3.3V, All data has PCB insertion loss de-embedded, unless otherwise noted

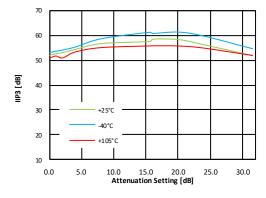


Figure 26. IIP3 at 1.95GHz vs. Attenuation setting over Temperature

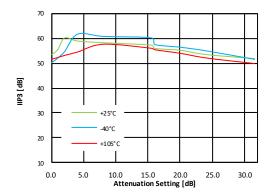


Figure 28. IIP3 at 2.45GHz vs. Attenuation setting over Temperature

Note: 1. Maximum Attenuation state means that the attenuation setting is 31.5dB

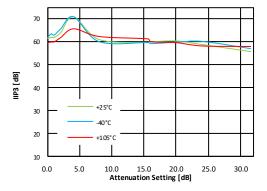


Figure 25. IIP3 at 1.8GHz vs. Attenuation setting over Temperature

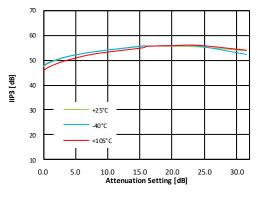


Figure 27. IIP3 at 2.15GHz vs. Attenuation setting over Temperature

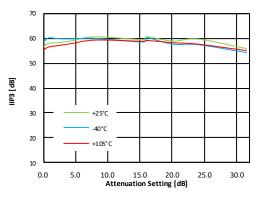


Figure 28. IIP3 at 2.65GHz vs. Attenuation setting over Temperature

2. Input 0.1dB Compression

BeRex

•website: www.berex.com

•email: sales@berex.com

10

BDA4601

1MHz-4GHz

BDA4601 Evaluation board Kit Description

Figure 30. BDA4601 EVK

Evaluation board Kit Introduction

BDA4601 Evaluation Kit is made up of a combination of an RF board and an interface board

The schematic of the BDA4601 evaluation RF board is shown in Figure 30. The BDA4601 evaluation RF board is constructed of a 4-layer material with a copper thickness of 0.7 mil on each layer. Every copper layer is separated with a dielectric material. The top dielectric material is 12 mil RO4003. The middle and bottom dielectric materials are FR-4, used for mechanical strength and overall board thickness of approximately 1.55mm. BDA4601 Evaluation INTERFACE board is assembled with a SP3T switches(D1~D6,LE), SP2T

BDA4601 Evaluation INTERFACE board is assembled with a SP3T switches(D1~D6,LE), SP2T mechanical switch (P/S), and several header & switch.

Evaluation Board Programming Using USB Interface

In order to evaluate the BDA4601 performance, the Application Software has to be installed on your computer. And The DSA application software GUI supports Latched Parallel and Serial modes. software can be downloaded from BeRex's website

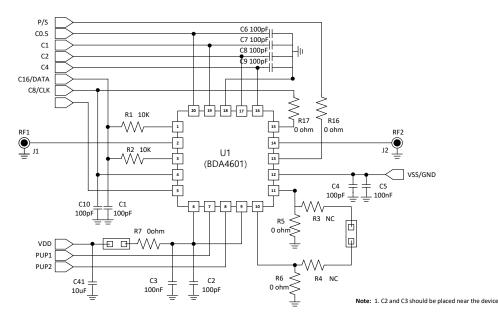
Serial Control Mode

.

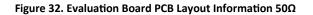
- Connect directly the Evaluation INTEFRACE board USB port(J3) to PC
- Set the direction of P<->S Switch to S direction
- Set the D0~D5,LE switch to the central position.
- Operate the 0~31.5dB attenuation state in GUI and then control the DSA

Latched Parallel Control Mode

- Connect directly the Evaluation INTEFRACE board USB port(J3) to PC
- Set the direction of P<->S Switch to P direction
- Set the D0~D5,LE switch to the middle position.
- Operate the 0~31.5dB attenuation state in GUI and then control the DSA


Direct Parallel Control Mode

- Set the direction of P<->S Switch to P direction
- Set LE switch to the LOW Position
- For the setting to attenuation state, D0~D5 switches can be combined in manually program, refer to Table 9.


Please refer to user manual for more detailed operation method of BDA4601 EVK.

BDA4601 Evaluation board Kit Description

Figure 31. Evaluation Board Schematic Diagram for Parallel and Serial with PUP

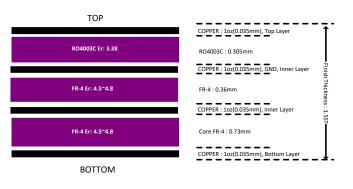


Table13. Bill of Material - Evaluation Board

No.	Ref Des	Part Qty	Value	Description	Remark
1	C1,C3,C5-C10	8	100pF	CAP, 0402, CHIP Ceramic, ±0.25%	
2	C2,C4	2	100nF	CAP, 0402, CHIP Ceramic, ±0.25%	
3	R1,R2	2	10k ohm	RES, 0402, CHIP, ±5%	
4	R3,R4	2	NC		
5	R5,R6,R7,R16,R17	5	0 ohm	RES, 0402, CHIP, ±5%	
6	C41	1	10 uF	TANTAL 3216 10UF 16V	
7	J1,J2	2	CON	SMA END LAUNCH	
8	U1	1	Chip	DSA, BDA4601 QFN4x4 24L	

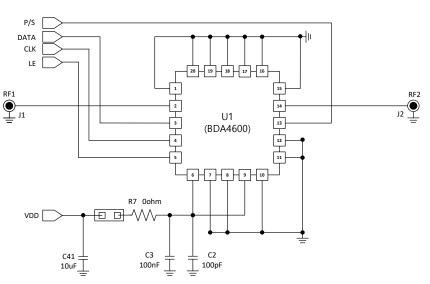
Figure 33. Evaluation Board PCB Layer Information 50Ω

BeRex

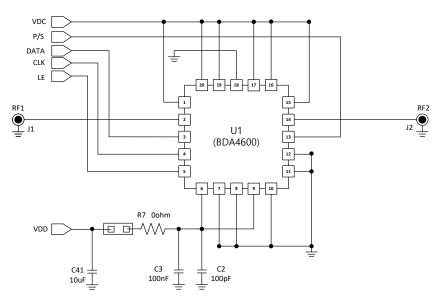
•website: <u>www.berex.com</u>

•email: sales@berex.com

BDA4601


1MHz-4GHz

1MHz– 4GHz


BDA4601

BDA4601 Evaluation board Kit Description

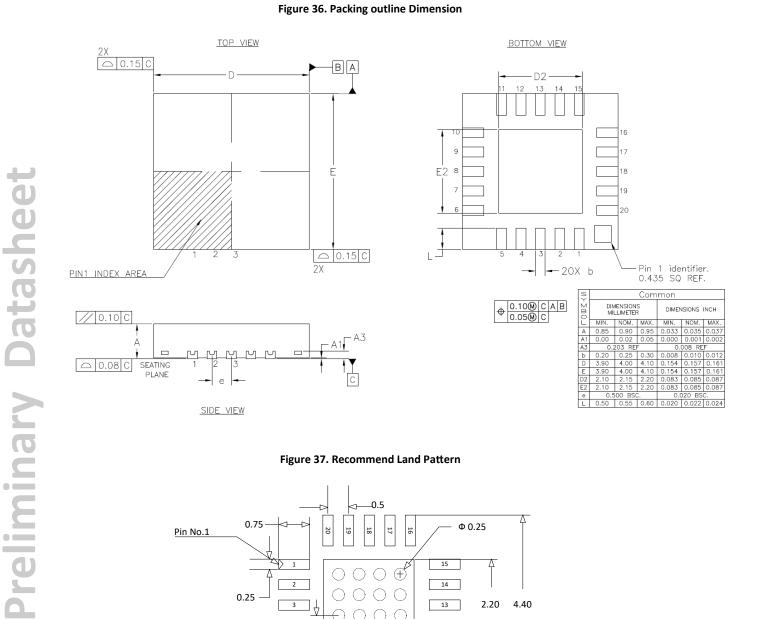
Figure 34. Evaluation Board Schematic Diagram For Serial only

Figure 35. Evaluation Board Schematic Diagram For Serial only & Power Up control

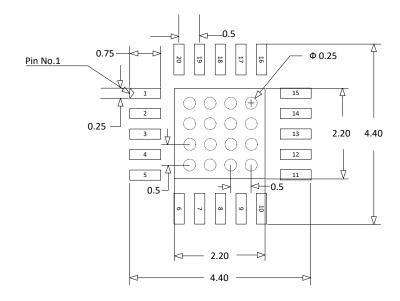
Note: 1. C2 and C3 should be placed near the device.

BeRex

2. VDC(Fig35) is a 3.0V DC constant voltage supply for Power up control. When attenuator use only serial mode (Attenuation state 31.5dB)


•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

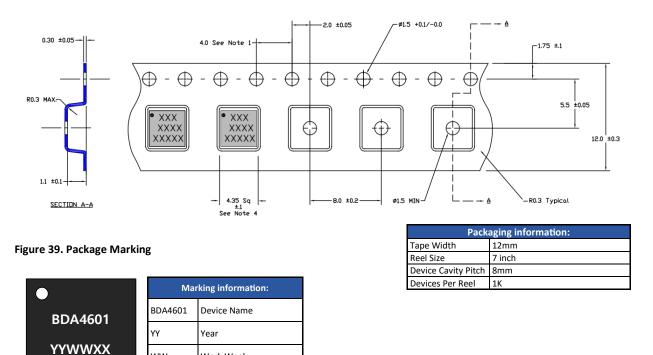


BDA4601

1MHz-4GHz

Figure 37. Recommend Land Pattern

•website: www.berex.com


•email: sales@berex.com

1MHz– 4GHz

BDA4601

Figure 38. Tape & Reel

Lead plating finish

100% Tin Matte finish

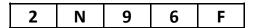
(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

Work Week

LOT Number

MSL / ESD Rating

ESD Rating:	Class 2		
Value:	Passes ≤ 2000V		
Test:	Human Body Model(HBM)		
Standard:	JEDEC Standard JESD22-A114B		
MSL Rating:	Level 1 at +265°C convection reflow		
Standard:	JEDEC Standard J-STD-020		


ww

хх

Proper ESD procedures should be followed when handling this device.

NATO CAGE code:

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>